Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL Toán 11 HK1 năm 2018 - 2019 trường Lý Thái Tổ - Bắc Ninh

Đề thi KSCL Toán 11 HK1 năm 2018 – 2019 trường Lý Thái Tổ – Bắc Ninh mã đề 132 được biên soạn nhằm đánh giá lại tất cả các kiến thức Toán 11 mà học sinh đã được truyền đạt trong giai đoạn học kỳ 1 vừa qua của năm học 2018 – 2019, kỳ thi được diễn ra vào ngày 21 tháng 01 năm 2019, đề gồm 05 trang với 50 câu trắc nghiệm, thí sinh làm bài trong 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 11 HK1 năm 2018 – 2019 trường Lý Thái Tổ – Bắc Ninh : + Trên một đoạn đường giao thông có 2 con đường vuông góc với nhau tại O như hình vẽ. Một địa danh lịch sử có vị trí đặt tại M, vị trí M cách đường OE 150m và cách đường Ox 1km. Vì lý do thực tiễn người ta muốn làm một đoạn đường thẳng AB đi qua vị trí M, biết rằng giá trị để làm 100m đường là 150 triệu đồng. Chọn vị trí của A và B để hoàn thành con đường với chi phí thấp nhất. Hỏi chi phí thấp nhất để hoàn thành con đường là bao nhiêu? A. 3 tỷ đồng. B. 2, 178 tỷ đồng. C. 2,0987 tỷ đồng. D. 2,0963 tỷ đồng. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. H là giao điểm của AC và MN .Giao điểm của SO với (MNK) là điểm E. Hãy chọn cách xác định điểm E đúng nhất trong bốn phương án sau: A. E là giao của KN với SO. B. E là giao của KH với SO. C. E là giao của MN với SO. D. E là giao của KM với SO. + Có 20 bông hoa trong đó có 8 bông đỏ, 7 bông vàng, 5 bông trắng. Chọn ngẫu nhiên 4 bông để tạo thành một bó. Có bao nhiên cách chọn để bó hoa có cả 3 màu?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2018 2019 trường THPT Ngô Quyền Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2018 2019 trường THPT Ngô Quyền Hà Nội Bản PDF
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2018 2019 trường chuyên Nguyễn Huệ Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2018 2019 trường chuyên Nguyễn Huệ Hà Nội Bản PDF Đề thi học kỳ 1 Toán lớp 11 năm học 2018 – 2019 trường chuyên Nguyễn Huệ – Hà Nội mã đề 201 được biên soạn nhằm giúp giáo viên bộ môn và nhà trường nắm chính xác năng lực học tập môn Toán của học sinh khối 11, để làm cơ sở đánh giá và xếp loại, đề gồm 5 trang với 50 câu trắc nghiệm , thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 14 tháng 12 năm 2018. Trích dẫn đề thi học kỳ 1 Toán lớp 11 năm học 2018 – 2019 trường chuyên Nguyễn Huệ – Hà Nội : + Chọn mệnh đề sai: A. Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính. B. Phép vị tự biến đường thẳng thành đường thẳng song song hoặc trùng với nó. C. Phép quay góc quay 90° biến đường thẳng thành đường thẳng song song hoặc trùng với nó. D. Phép quay góc quay 90° biến đường thẳng thành đường vuông góc với nó. [ads] + Chọn khẳng định sai? A. Hàm số y = tanx + sinx là hàm số tuần hoàn với chu kỳ 2pi. B. Hàm số y = cosx là hàm số tuần hoàn với chu kỳ 2pi. C. Hàm số y = cotx + tanx là hàm số tuần hoàn với chu kỳ pi. D. Hàm số y = sinx là hàm số tuần hoàn với chu kỳ pi. + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AD, BC; điểm G là trọng tâm của tam giác BCD. Tìm giao điểm của đường thẳng MG và mặt phẳng (ABC). A. Giao điểm của MG và BC. B. Giao điểm của MG và AC. C. Giao điểm của MG và AN. D. Giao điểm của MG và AB.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2018 2019 trường THPT chuyên Lê Hồng Phong TP. HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2018 2019 trường THPT chuyên Lê Hồng Phong TP. HCM Bản PDF Đề thi HK1 Toán lớp 11 năm 2018 – 2019 trường THPT chuyên Lê Hồng Phong – TP. HCM được biên soạn theo hình thức tự luận với 7 bài toán, thời gian làm bài 90 phút, đề thi dành cho các lớp 11CV, 11CA, 11CTrN, 11D, 11SN, đề thi có lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 11 năm 2018 – 2019 trường THPT chuyên Lê Hồng Phong – TP. HCM : + Tại trạm xe buýt có 5 hành khách đang chờ xe đón, không ai quen nhau trong đó có anh A và chị B. Khi đó có 1 chiếc xe ghé trạm để đón khách, biết rằng lúc đó trên xe chỉ còn đúng 5 ghế trống mỗi ghế trống chỉ 1 người ngồi gồm có 1 dãy ghế trống 3 chỗ và 2 chỗ ghế đơn để chở 5 người tham khảo hình vẽ bên các ghế trống được ghi là 1, 2, 3, 4, 5 và 5 hành khách lên ngồi ngẫu nhiên vào 5 chỗ còn trống. Tính xác suất để anh A và chị B ngồi cạnh nhau? + Một quả bóng «siêu nẩy» rơi từ độ cao 30 mét so với mặt đất khi chạm đất nó nẩy lên cao với độ cao bằng 2/3 so với độ cao lần tước đó. Hỏi ở lần nẩy lên thứ 11 quả bóng đạt độ cao tối đa bao nhiêu mét so với mặt đất (lấy kết quả gần đúng 2 số sau dấu phẩy)? + Cho một đa giác đều 30 đỉnh. Có bao nhiêu tam giác cân có 3 đỉnh là 3 đỉnh của đa giác ban đầu?
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2018 2019 trường Lương Thế Vinh Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2018 2019 trường Lương Thế Vinh Hà Nội Bản PDF Sytu xin chia sẻ đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kỳ 1 Toán lớp 11 năm học 2018 – 2019 trường Lương Thế Vinh – Hà Nội, đề có mã 181 gồm 5 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, thời gian làm đề 90 phút (không tính thời gian giám thị phát đề), kỳ thi nhằm giúp giáo viên bộ môn và nhà trường đánh giá tổng quát những kiến thức Toán lớp 11 mà các em đã được học trong giai đoạn HK1 vừa qua của năm học 2018 – 2019. Trích dẫn đề thi học kỳ 1 Toán lớp 11 năm học 2018 – 2019 trường Lương Thế Vinh – Hà Nội : + Một lớp học tại trường THCS&THPT trường Lương Thế Vinh – Hà Nội có 3 tổ. Tổ I gồm có 3 học sinh nam và 7 học sinh nữ; tổ II gồm có 5 học sinh nam và 5 học sinh nữ; tổ III gồm có 6 học sinh nam và 4 học sinh nữ. Cô giáo chủ nhiệm cần chọn ra một học sinh nam và một học sinh nữ để tham gia hoạt động tình nguyện. Hỏi cô giáo có bao nhiêu cách chọn, nếu cô muốn chọn hai em học sinh ở hai tổ khác nhau? [ads] + Giải bóng đá Vô địch quốc gia Việt Nam 2018 (Nuti Cafe VLeague 2018) có 14 đội bóng tham dự theo thể thức vòng tròn tính điểm lượt đi – lượt về (nghĩa là 2 đội bất kỳ sẽ đấu với nhau đúng 2 trận). Hỏi có tất cả | bao nhiêu trận đấu diễn ra trong cả giải đấu đó? + Trong không gian, điều kiện nào sau đây không đủ để kết luận rằng mặt phẳng (P) song song với mặt phẳng (Q)? (giả thiết rằng các mặt phẳng đều phân biệt). A. (P) và (Q) không có điểm chung. B. (P) chứa vô số đường thẳng song song với (Q). C. (P) chứa hai đường thẳng cắt nhau và chúng cùng song song với (Q). D. (P) và (Q) cùng song song với mặt phẳng R.