Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 2 Toán 12 năm 2019 - 2020 trường Bình Xuyên - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát lần 2 Toán 12 năm 2019 – 2020 trường Bình Xuyên – Vĩnh Phúc, kỳ thi nhằm kiểm tra chất lượng môn Toán thường xuyên đối với học sinh khối 12, giúp các em rèn luyện chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Đề khảo sát lần 2 Toán 12 năm 2019 – 2020 trường Bình Xuyên – Vĩnh Phúc mã đề 101 gồm có 05 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài thi, đề thi có đáp án. Trích dẫn đề khảo sát lần 2 Toán 12 năm 2019 – 2020 trường Bình Xuyên – Vĩnh Phúc : + Đầu mỗi tháng anh A gửi vào ngân hàng 3 triệu đồng với lãi xuất 0,6% mỗi tháng. Hỏi sau ít nhất bao nhiêu tháng ( khi ngân hàng đã tính lãi) thì anh A được số tiền cả gốc và lãi là 100 triệu đồng trở lên?. + Trong giờ học thực hành trên bàn giáo viên có ba chiếc hộp, mỗi hộp có chứa 100 chiếc thẻ đồng chất được đánh số từ 0 đến 99, thầy giáo phát 3 hộp cho 3 em học sinh và yêu cầu mỗi em rút 1 tấm thẻ trên hộp của mình và nộp cho thầy. Tính xác suất để thầy chọn được 3 tấm thẻ có tổng 3 số ghi trên 3 thẻ bằng 100. [ads] + Một cái “cù” (đồ chơi trẻ em) gồm hai khối: Khối trụ (H1) và khối nón (H2) như hình bên. Chiều cao và bán kính khối trụ lần lượt bằng h1, r1, chiều cao và bán kính đáy của khối nón lần lượt bằng h2, r2 thỏa mãn h1 = 1/3h2, r1 = 1/2r2. Biết thể tích toàn khối là 30cm3, thể tích khối (H1) bằng? + Cho hình chóp S.ABCD đáy ABCD là hình chữ nhật có AB = 2a, AD = a, SA = 3a và SA vuông góc với đáy ABCD. Thể tích khối chóp S.ABCD là? + Cho khối tứ diện ABCD có tam giác ABC và tam giác ABD đều cạnh 6a, M là trung điểm AC và N nằm trên cạnh BD sao cho BN = 2ND. Mặt phẳng (alpha) chứa M, N và (alpha) song song với AB chia khối tứ diện ABCD thành hai khối đa diện, thể tích của khối đa diện chứa điểm A bằng 33a^3/4. Tính góc giữa hai mặt phẳng (ABC) và (ABD).

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra định kì lần 1 Toán 12 năm 2019 - 2020 trường chuyên Bắc Ninh
giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 đề kiểm tra định kì lần 1 Toán 12 năm học 2019 – 2020 trường THPT chuyên Bắc Ninh, kỳ thi được diễn ra vào giai đoạn giữa học kì 1 năm học 2019 – 2020. Đề kiểm tra định kì lần 1 Toán 12 năm 2019 – 2020 trường chuyên Bắc Ninh có mã đề 105, đề được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, đề gồm 06 trang, thời gian làm bài 90 phút. Trích dẫn đề kiểm tra định kì lần 1 Toán 12 năm 2019 – 2020 trường chuyên Bắc Ninh : + Mệnh đề nào trong các mệnh đề dưới đây là đúng? A. Đồ thị của hai hàm số y = log_e x và y = log_1/e x đối xứng nhau qua trục tung. B. Đồ thị của hai hàm số y = e^x và y = ln x đối xứng nhau qua đường phân giác của góc phần tử thứ nhất. C. Đồ thị của hai hàm số y = e^x và y = ln x đối xứng nhau qua đường phân giác của góc phần tử thứ hai. D. Đồ thị của hai hàm số y = e^x và y = (1/e)^x đối xứng nhau qua trục hoành. [ads] + Cho tứ diện đều ABCD có cạnh bằng 6√2. Ở bốn đỉnh tứ diện người ta cắt đi các tứ diện đều bằng nhau có cạnh bằng x. Biết khối đa diện còn lại sau khi cắt có thể tích bằng 1/2 thể tích khối tứ diện ABCD. Giá trị của x là? + Cho a và b là hai số thực dương thỏa mãn 5a^2 + 2b^2 + 5 = 2a + 4b + 4ab. Xét các hệ thức sau: Hệ thức 1: In(a + 1) + In(b + 1) = ln(a^2 + b^2 +1). Hệ thức 2: In(a^2 + 1) + In(b + 1) = In(b^2 + 1) + In(a + 1). Hệ thức 3: In(a + b + 3ab – 1) = 2ln(a + b). Hệ thức 4: ln(a + b + 2ab + 2) = 2ln(a + b). Trong các hệ thức trên có bao nhiêu hệ thức đúng?
Đề khảo sát chất lượng Toán 12 năm 2019 - 2020 trường Ngô Gia Tự - Phú Yên
giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 đề thi khảo sát chất lượng môn Toán lớp 12 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Phú Yên, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 12 năm 2019 – 2020 trường Ngô Gia Tự – Phú Yên có mã đề 132, đề gồm 10 trang với 50 câu trắc nghiệm khách quan, học sinh có 90 phút để làm bài thi, nội dung kiểm tra thuộc các chủ đề: ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số (Giải tích 12 chương 1), khối đa diện và thể tích của chúng (Hình học 12 chương 1), đề thi có đáp án. [ads] Trích dẫn đề khảo sát chất lượng Toán 12 năm 2019 – 2020 trường Ngô Gia Tự – Phú Yên : + Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, AB = 1, BC = 2. Hình chiếu vuông góc của điểm A’ trên mặt phẳng (ABC) là trung điểm của BC. Khoảng cách giữa hai đường thẳng B’C’ và A’B bằng? + Cho hàm số y = f(x) có đồ thị hàm số như hình vẽ sau. Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(2x^3 + x – 1) trên đoạn [0;1]. Giá trị của M – m bằng? + Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình vẽ. Gọi S là tập tất cả các giá trị nguyên của tham số m thoả mãn m thuộc (−10;10) sao cho hàm số y = f(x – m) đồng biến trên khoảng (−2;0) . Số phần tử của tập S là?
Đề khảo sát chất lượng đầu năm Toán 12 năm 2019 - 2020 sở GDĐT Gia Lai
Ngày 27 tháng 09 năm 2019, sở Giáo dục và Đào tạo tỉnh Gia Lai tổ chức kỳ thi kiểm tra khảo sát chất lượng đầu năm môn Toán 12 năm học 2019 – 2020, nhằm theo dõi tình hình học tập môn Toán của học sinh khối 12 qua từng giai đoạn. Đề khảo sát chất lượng đầu năm Toán 12 năm 2019 – 2020 sở GD&ĐT Gia Lai có mã đề thi 143, đề thi gồm có 06 trang với 35 câu hỏi và bài toán dạng trắc nghiệm cho mỗi hệ: hệ GDPT và hệ GDTX, thời gian làm bài KSCL là 60 phút, nội dung kiểm tra thuộc chủ đề kiến thức môn Toán 11 và các kiến thức môn Toán 12 đã học. [ads] Trích dẫn đề khảo sát chất lượng đầu năm Toán 12 năm 2019 – 2020 sở GD&ĐT Gia Lai : + Cho hàm số y = x^3 có đồ thị (C). Gọi A, B là hai điểm thuộc (C) sao cho các tiếp tuyến của (C) tại A, B lần lượt cắt trục tung tại hai điểm M và N thỏa mãn tứ giác AMBN là hình chữ nhật. Diện tích của hình chữ nhật đó bằng? + Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a (tham khảo hình bên). Gọi M là trung điểm của cạnh AB. Biết tam giác MA’C là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách giữa hai đường thẳng AC và BB’ bằng? + Có bao nhiêu giá trị của tham số m để hàm số f(x) = m^2.x – 4 nếu x khác 0, f(x) = -3 nếu x = 0 liên tục tại điểm x = 0?