Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán

Nội dung Lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán Bản PDF - Nội dung bài viết Giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán Giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán Bài toán bất đẳng thức và cực trị luôn là những thách thức lớn đối với học sinh khi tham gia vào kì thi tuyển sinh vào lớp 10 môn Toán. Đây là phần bài thi mang tính quyết định, giúp trường chọn lọc những học sinh giỏi và xuất sắc nhất để vào học tại các lớp chuyên Toán tại các trường THPT chuyên. Để giúp các em học sinh lớp 9 chuẩn bị cho kỳ thi tuyển sinh, Sytu đã tổng hợp tài liệu lời giải cho bài toán bất đẳng thức, cực trị trong đề thi tuyển sinh lớp 10 môn Toán. Tài liệu này được biên soạn bởi tác giả Trịnh Bình, chuyên gia giàu kinh nghiệm trong lĩnh vực giáo dục Toán học. Bên dưới là một số ví dụ về nội dung và cấu trúc của tài liệu lời giải: Ví dụ 1: Cho các số dương a, b, c thỏa mãn abc = a + b + c + 2. Hãy tìm giá trị lớn nhất của biểu thức P = 1/√(a^2 + b^2) + 1/√(b^2 + c^2) + 1/√(c^2 + a^2). Ví dụ 2: Giả sử x, y, z là các số thực trong đoạn [0;2] và x + y + z = 3. Hãy chứng minh rằng x^2 + y^2 + z^2 < 6 và tìm giá trị lớn nhất của biểu thức P = x^3 + y^3 + z^3 – 3xyz. Ví dụ 3: Cho x, y, z là các số thực dương thỏa mãn xy + yz + 4zx = 32. Tìm giá trị nhỏ nhất của biểu thức P = x^2 + 16y^2 + 16z^2. Với tài liệu lời giải bài toán bất đẳng thức, cực trị trong đề thi tuyển sinh môn Toán, các em học sinh sẽ được trang bị kiến thức và kỹ năng cần thiết để tự tin giải quyết các dạng bài tương tự trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

7 chuyên đề luyện thi vào lớp 10 môn Toán - Diệp Tuân
Tài liệu gồm 185 trang, được biên soạn bởi thầy giáo Diệp Tuân, tuyển tập 7 chuyên đề luyện thi vào lớp 10 môn Toán. Chuyên đề 1. Căn bậc hai và căn bậc ba. Chuyên đề 2. Hàm số bậc nhất và hàm số bậc hai. Chuyên đề 3. Phương trình và hệ phương trình. Chuyên đề 4. Phương trình chứa tham số m. Chuyên đề 5. Giải toán bằng cách lập phương trình và hệ phương trình.
Phân dạng các bài toán trong đề tuyển sinh lớp 10 môn Toán (2023 - 2024)
Tài liệu gồm 236 trang, được biên soạn bởi quý thầy, cô giáo nhóm Word – Giải – Tách Chuyên Đề Vào 10 Môn Toán, phân dạng và hướng dẫn giải chi tiết các bài toán trong các đề thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024. Chuyên đề 1. Căn thức và các bài toán liên quan. Chuyên đề 2. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Chuyên đề 3. Hàm số. Chuyên đề 4. Hệ phương trình. Chuyên đề 5. Phương trình. Chuyên đề 6. Hình học. Chuyên đề 7. Bất đẳng thức. Chuyên đề 8. Giá trị của biểu thức. Chuyên đề 9. Số học.