Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 tháng 3 năm 2023 trường THCS Cầu Giấy - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán ôn thi tuyển sinh vào lớp 10 THPT giai đoạn tháng 3 năm 2023 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội. Trích dẫn Đề thi thử Toán vào lớp 10 tháng 3 năm 2023 trường THCS Cầu Giấy – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một thuyền du lịch Sông Hồng đi xuôi dòng từ bến Chương Dương đến bến Dạ Trạch dài 28km rồi ngược dòng từ Dạ Trạch về Chương Dương hết tất cả 2 giờ 55 phút. Tính vận tốc riêng của thuyền biết rằng vận tốc dòng nước chảy là 4km/giờ. + Cho đường tròn tâm O và đường kính AB. Gọi H là điểm nằm giữa O và B. Kẻ dây cung CD vuông góc với AB tại H. Trên cung nhỏ AC lấy điểm E bất kì (E khác A và C). Kẻ CK vuông góc với AE tại K. Đường thẳng CK cắt DE tại F. a) Chứng minh rằng AHCK là tứ giác nội tiếp. b) Chứng minh rằng KH // DE và ADF cân. c) Gọi M và N lần lượt là hình chiếu của D trên EA và EB. Chứng minh rằng DHN = DBN = EAD. Từ đó suy ra ba điểm M, H, N thẳng hàng. d) Tìm vị trí của điểm E sao cho diện tích tam giác ADF lớn nhất. + Cho các số thực không âm a, b thỏa mãn điều kiện a + b = 2. Tìm giá trị nhỏ nhất của biểu thức P.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh 10 môn Toán năm 2020 - 2021 trường chuyên Lê Quý Đôn - Khánh Hòa
Đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Khánh Hòa gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề); kỳ thi được diễn ra ngày 17 tháng 07 năm 2020. Trích dẫn đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Khánh Hòa : + Cho P(x) = ax2 + bx + c là số nguyên với mọi x là số nguyên. Chứng minh rằng: 2a, b + c, c là các số nguyên. + Cho x, y là các số thực dương và x5 − y3 ≥ 2x. Chứng minh rằng x3 ≥ 2y. + Để xác thực tài khoản của người dùng A, một ứng dụng yêu cầu người đó thiết lập một mật khẩu là một số tự nhiên gồm 3 chữ số và chia hết cho 6, trong đó các chữ số phải lớn hơn 4. Hỏi người dùng A có thể tạo ra bao nhiêu mật khẩu theo yêu cầu trên.
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020 - 2021 sở GDĐT Hà Nam
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020 – 2021 sở GD&ĐT Hà Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, kỳ thi được diễn ra ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020 – 2021 sở GD&ĐT Hà Nam : + Cho hàm số y = ax2 (a khác 0) có đồ thị là parabol như hình vẽ. Xác định hệ số a. + Cho phương trình 12×2 = x + m2 (với m là tham số). Chứng minh phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi m ∈ R. Tìm các giá trị của m để x1 = p320 − x32. + Cho đường tròn (O), đường kính AB cố định. Điểm H cố định nằm giữa hai điểm A và O sao cho AH < OH. Kẻ dây cung MN vuông góc với AB tại H. Gọi C là điểm tùy thuộc cung lớn MN sao cho C không trùng với M, N và B. Gọi K là giao điểm của AC và MN. 1. Chứng minh tứ giác BCKH nội tiếp. 2. Chứng minh tam giac AMK đồng dạng với tam giác ACM. 3. Cho độ dài đoạn thẳng AH = a. Tính AK.AC − HA.HB theo a . 4. Gọi I là tâm đường tròn ngoại tiếp tam giác MKC. Xác định vị vị trí của điểm C để độ dài đoạn thẳng IN nhỏ nhất.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 2021 sở GDĐT Gia Lai
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai : + Tìm giá trị của tham số m để hàm số y = (m − 1) x + m2 nghịch biến trên R và đồ thị của nó đi qua điểm M (2; 1). + Cho phương trình x2 − 2(m − 1)x + 2m − 4 = 0 (với m là tham số) có hai nghiệm phân biệt x1; x2. Tìm giá trị của tham số m để x21 + x22 = 3. + Tìm nghiệm nguyên dương của phương trình 2×2 − 8x + 62 = (x − 1)y2 + x2 − 6x + 5.
Đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2020 - 2021 sở GDĐT Gia Lai
Đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai : + Cho phương trình x2 − 4(m + 1)x + 3m2 + 2m − 5 = 0, với m là tham số. Xác định giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x1, x2 sao cho x21 + 4(m + 1)x2 + 3m2 + 2m − 5 = 9. + Quãng đường từ A đến B dài 100 km. Cùng một lúc, một xe máy khởi hành từ A đi đến B và một tô khởi hành từ B đến A. Sau khi hai xe gặp nhau, xe máy đi 1 giờ 30 phút nữa mới đến B. Giả sử vận tốc hai xe không thay đổi trên suốt quãng đường đi. Biết vận tốc của xe máy nhỏ hơn vận tốc của xe tô là 20 km/h. Tính vận tốc của mỗi xe. [ads] + Cho đường tròn tâm O, đường kính AB = 2R. Gọi C là trung điểm của đoạn thẳng OA, qua C kẻ dây cung MN vuông góc với OA. Gọi K là điểm tùy trên cung nhỏ BM (K không trùng với B và M), H là giao điểm của AK và MN. 1. Chứng minh tứ giác BCHK là tứ giác nội tiếp đường tròn. 2. Chứng minh AK.AH = R2. 3. Trên đoạn thẳng KN lấy điểm I sao cho KI = KM. Chứng minh NI = KB.