Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kỳ 1 Toán 10 năm 2023 - 2024 trường THCS - THPT Hồng Đức - TP HCM

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán 10 năm học 2023 – 2024 trường THCS – THPT Hồng Đức, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối kỳ 1 Toán 10 năm 2023 – 2024 trường THCS – THPT Hồng Đức – TP HCM : + Nhảy bungee là một trò chơi mạo hiểm. Trong trò chơi này, người chơi đứng ở vị trí trên cao, thắt dây an toàn và nhảy xuống. Sợi dây này có tính đàn hồi và được tính toán chiều dài để nó kéo người chơi lại khi gần chạm đất (hoặc mặt nước). Chiếc cầu trong hình dưới có một bộ phận chống đỡ dạng parabol. Một người muốn thực hiện một cú nhảy bungee từ giữa cầu xuống với dây an toàn. Người này cần trang bị sợi dây dài bao nhiêu mét? Biết rằng chiều dài của sợi dây đó bằng một phần ba khoảng cách từ vị trí bắt đầu nhảy đến mặt nước. + Bộ phận nghiên cứu thị trường của một xí nghiệp xác định tổng chi phí để sản xuất Q sản phẩm là 2 Q Q 200 180 000 (nghìn đồng). Giả sử giá mỗi sản phẩm bán ra thị trường là 1 300 nghìn đồng. Biết rằng lợi nhuận là hiệu của doanh thu trừ đi tổng chi phí để sản xuất, xí nghiệp muốn thu được lợi nhuận cao nhất thì cần phải bán được bao nhiêu sản phẩm? + Nhằm mục đích nâng cao ý thức tự học và sáng tạo, các bạn học sinh trường Hồng Đức hằng tháng đều quyên góp sách vào thư viện chung của trường, bảng dưới đây thống kê số lượng sách mỗi tháng quyên góp được trong năm 2023. Hãy tính số sách trung bình mỗi tháng mà các bạn học sinh quyên góp được.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường chuyên Lê Hồng Phong TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường chuyên Lê Hồng Phong TP HCM Bản PDF Thứ Tư ngày 16 tháng 12 năm 2020, trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng cuối học kỳ 1 môn Toán lớp 10 năm học 2020 – 2021. Đề thi học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM : + Trong mặt phẳng Oxy, cho tam giác ABC biết A(2;1), B(1;2), C(4;3). a) Chứng minh ABC là tam giác vuông cân. b) Tìm giao điểm của đường thẳng AB và trục tung. c) Tìm tọa độ điểm D sao cho ABCD là hình thang có AD // BC và diện tích ABCD bằng 15. + Cho hình vuông ABCD cạnh a, gọi I là giao điểm của AC và BD. M là điểm thỏa MA2 + MB2 + MC2 + MD2 = 12a2, tính MI. + Cho phương trình (2x^2 – 8x + m)/(x^2 – 4x + 3) = 1. Tìm tất cả các giá trị của tham số m để phương trình có nghiệm.
Tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ I lớp 10 môn Toán
Nội dung Tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ I lớp 10 môn Toán Bản PDF Tài liệu gồm 48 trang được biên soạn bởi thầy Lương Tuấn Đức (Facebook: Giang Sơn) tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ I môn Toán lớp 10, giúp học sinh ôn tập để chuẩn bị cho kỳ thi HK1 Toán lớp 10 tại trường. Các đề thi được biên soạn theo dạng đề trắc nghiệm, mỗi đề gồm 50 câu, học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn tài liệu tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ I môn Toán lớp 10: + Tìm mệnh đề đúng đối với phương trình √x(x – 1) + √x(x + 2) = 2√x^2. A. Tập xác định của phương trình là [1;+vc). B. Phương trình có tổng các nghiệm bằng 1,125. C. Phương trình đã cho tương đương phương trình √x(10x – 9) = 0. D. Phương trình tồn tại nghiệm không vượt quá – 2. [ads] + Biết rằng phương trình 2x^2 + 2xsina = 2x + cosa^2 luôn có nghiệm với mọi giá trị của a. Ký hiệu P, Q tương ứng là giá trị lớn nhất, giá trị nhỏ nhất của tổng bình phương hai nghiệm. Tính 3P + 2Q. + Cho hình vuông ABCD, các điểm E, F, G, H theo thứ tự là trọng tâm các tam giác ADC, DCB, ABC, ABD. Ký hiệu d1, d2, d3, d4 tương ứng là các đường thẳng đi qua E và vuông góc với BD, đi qua F và vuông góc với AC, đi qua G và vuông góc với BD, đi qua H và vuông góc với AC. Tập hợp các điểm M thỏa mãn đẳng thức MA^2 + MB^2 + MC^2 – 3MD^2 = -4a^2/3 là đường thẳng nào sau đây?
Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phước Long TP HCM
Nội dung Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phước Long TP HCM Bản PDF Đề thi cuối học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Phước Long, thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi cuối học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Phước Long – TP HCM : + Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = -x2 – 2x + 2. + Trong mặt phẳng với hệ tọa độ Oxy cho ba điểm A(3;8), B(-1;2) và C(6;-1). a) Chứng minh ba điểm A, B, C tạo thành một tam giác. Tìm tọa độ trọng tâm G của tam giác ABC. b) Tìm tọa độ điểm E, biết E nằm trên trục Oy và tam giác ACE vuông tại E. c) Tìm tọa độ điểm H, biết rằng H thuộc đường thẳng d: y = x và độ dài đoạn BH bằng 5. + Cho phương trình (x2 + 2x – 3)(x2 – 2x – 3m + 2) = 0. Tìm tất cả các giá trị của tham số m để phương trình đã cho có nghiệm kép.
Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Hữu Huân TP HCM
Nội dung Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Hữu Huân TP HCM Bản PDF Đề thi cuối học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Nguyễn Hữu Huân, thành phố Hồ Chí Minh gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi cuối học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Nguyễn Hữu Huân – TP HCM : + Tìm giá trị nhỏ nhất của hàm số y = 3√(x – 1) + 2√(5 – x) trên đoạn [1;5]. + Trong hệ tọa độ Oxy, cho tam giác ABC có A(-3;4), B(-2;1), C(1;2). Chứng minh ABC là tam giác vuông cân. Tính diện tích tam giác ABC. + Cho tam giác ABC có AB = 6, AC = 8, BC = 7. Tính độ dài đường trung tuyến AM và đường cao BH của tam giác ABC.