Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nhị thức Newton và ứng dụng - Nguyễn Minh Tuấn

giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu chuyên đề nhị thức Newton và ứng dụng, tài liệu gồm 101 trang được biên soạn bởi các tác giả nhóm Tạp chí và Tư liệu Toán học: Nguyễn Minh Tuấn (chủ biên), Doãn Quang Tiến, Nguyễn Mai Hoàng Anh, Ngô Nguyên Quỳnh, Trần Văn Dũng; đề cập đến gần như là đầy đủ các dạng toán liên quan đến nhị thức Newton: tìm hệ số trong khai triển, chứng minh đẳng thức tổ hợp, và các biến dạng khác có thể gặp trong đề thi THPT Quốc Gia môn Toán hay đề thi học sinh giỏi môn Toán cấp tỉnh mảng không chuyên, nhằm giúp các bạn có cái nhìn bao quát về chủ đề này. Khái quát nội dung tài liệu nhị thức Newton và ứng dụng – Nguyễn Minh Tuấn: Phần 1 . Kí hiệu tổ hợp. + Vấn đề 1.1 Hệ số nhị thức. + Vấn đề 1.2 Công thức tổ hợp. Phần 2 . Tam giác Pascal và sự hình thành của công thức nhị thức Newton. + Vấn đề 2.1 Sự hình thành của công thức nhị thức. + Vấn đề 2.2 Câu chuyện về nhị thức Newton. + Vấn đề 2.3 Tam giác Pascal. + Vấn đề 2.4 Chứng minh công thức tổng quát p_n,k và công thức nhị thức Newton. + Vấn đề 2.5 Chứng minh công thức nhị thức Newton. Phần 3 . Một số tính chất cơ bản. + Vấn đề 3.1 Nhắc lại khai triển nhị thức Newton. + Vấn đề 3.2 Dấu hiệu các bài toán sử dụng nhị thức Newton trong các bài toán chứng minh đẳng thức. [ads] Phần 4 . Các dạng toán liên quan tới nhị thức newton. + Vấn đề 4.1 Bài toán khai triển nhị thức và chứng minh đẳng thức cơ bản. + Vấn đề 4.2 Bài toán về hệ số lớn nhất. + Vấn đề 4.3 Chứng minh các đẳng thức. + Vấn đề 4. Các đẳng thức cơ bản. + Vấn đề 4. Ứng dụng một số tính chất đẳng thức đặc biệt. + Vấn đề 4.4 Ứng dụng đạo hàm trong chứng minh đẳng thức tổ hợp. + Vấn đề 4.5 Ứng dụng tích phân trong chứng minh đẳng thức tổ hợp. + Vấn đề 4.6 Ứng dụng số phức chứng minh đẳng thức tổ hợp. + Vấn đề 4.7 Đồng nhất hệ số. + Vấn đề 4.8 Bài tập tự luyện. Phần 5 . Bất đẳng thức liên quan tới công thức tổ hợp. + Vấn đề 5.1 Lí thuyết và ví dụ minh họa. + Vấn đề 5.2 Bài tập tự giải. Phần 6 . Tính chất số học của hệ số nhị thức. + Vấn đề 6.1 Đôi nét về lịch sử nghiên cứu tính chất số học của hệ số nhị thức. + Vấn đề 6.2 Các bài toán minh họa.

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề quy tắc cộng và quy tắc nhân
Tài liệu gồm 23 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề quy tắc cộng và quy tắc nhân, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2. I. KIẾN THỨC TRỌNG TÂM 1. Quy tắc cộng: Một công việc T được hoàn thành bởi cách thức khác nhau. – Cách thức 1 có m cách hoàn thành. – Cách thức 2 có n cách hoàn thành (không trùng lặp với cách nào ở trên). – Cách thức 3 có p cách hoàn thành (không trùng lặp với cách nào ở trên). … Khi đó để hoàn thành công việc T sẽ có m + n + p cách. Đây được gọi là Quy Tắc Cộng. 2. Quy tắc nhân: Một công việc T được hoàn thành bởi nhiều công đoạn liên tiếp. – Công đoạn 1 có m1 cách hoàn thành. – Công đoạn 2 có m2 cách hoàn thành. – Công đoạn 3 có m3 cách hoàn thành. … Khi đó để hoàn thành công việc T sẽ có 1 2 3 m m m cách. Đây được gọi là Quy Tắc Nhân. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề tổ hợp và xác suất - Nguyễn Hoàng Việt
Tài liệu gồm 158 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, trình bày lý thuyết cần nhớ, phân loại và phương pháp giải toán, bài tập tự luyện và bài tập trắc nghiệm (có đáp án) chuyên đề tổ hợp và xác suất (Toán 11 phần Đại số và Giải tích chương 2). Chương 2 . TỔ HỢP VÀ XÁC SUẤT 1. §1 – Các quy tắc đếm cơ bản 1. A LÝ THUYẾT CẦN NHỚ 1. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 1. + Dạng 1. Các bài toán chọn người và đồ vật cơ bản 1. + Dạng 2. Bài toán đếm số cơ bản 3. + Dạng 3. Nhóm bài toán sử dụng quy tắc bù trừ và bài toán khác 10. §2 – Hoán vị – chỉnh hợp – tổ hợp 22. A LÝ THUYẾT CẦN NHỚ 22. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 23. + Dạng 1. Các bài toán liên quan đến hoán vị 23. + Dạng 2. Các bài toán liên quan đến hoán vị, tổ hợp và chỉnh hợp 32. + Dạng 3. Giải phương trình, bất phương trình, hệ phương trình 46. §3 – Nhị thức Newton 61. A LÝ THUYẾT CẦN NHỚ 61. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 63. + Dạng 1. Tìm hệ số hoặc số hạng trong khai triển nhị thức Newton 63. + Dạng 2. Chứng minh hoặc tính tổng 82.. + Dạng 3. Dạng toán chẵn hoặc toàn lẻ 83. + Dạng 4. Nhóm bài toán tính tổng hoặc chứng minh dựa vào tính chất hoặc biến đổi (nâng cao) 86. + Dạng 5. Tìm hệ số hoặc số hạng dạng có điều kiện (kết hợp giữa dạng 1 & 2) 99. + Dạng 6. Tìm hệ số lớn nhất trong khai triển (a + bx)n 106. §4 – Biến cố và xác suất của biến cố 114. A Biến cố 114. B Xác suất 115. C Bài tập 117. + Dạng 1.Xác suất liên quan đến hình học 139. §5 – Các quy tắc tính xác suất 146. A Quy tắc cộng xác suất 146. B Quy tắc nhân xác suất 147.
Chuyên đề tổ hợp và xác suất - Phạm Hùng Hải
Tài liệu gồm 75 trang, được biên soạn bởi thầy giáo Phạm Hùng Hải, trình bày lý thuyết cần nhớ, phân loại và phương pháp giải toán, bài tập tự luyện và bài tập trắc nghiệm (có đáp án) chuyên đề tổ hợp và xác suất (Toán 11 phần Đại số và Giải tích chương 2). Chương 2 . TỔ HỢP – XÁC SUẤT 1. §1 – QUY TẮC ĐẾM 1. A LÝ THUYẾT CẦN NHỚ 1. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 1. + Dạng 1.Áp dụng quy tắc cộng hoặc nhân 1. + Dạng 2.Áp dụng vào bài toán chọn đồ vật 2. + Dạng 3.Áp dụng vào bài toán đếm số tự nhiên có n chữ số thỏa mãn điều kiện cho trước 3. C BÀI TẬP TỰ LUYỆN 6. D BÀI TẬP TRẮC NGHIỆM 7. §2 – HOÁN VỊ – CHỈNH HỢP – TỔ HỢP 10. A LÝ THUYẾT CẦN NHỚ 10. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 11. + Dạng 1. Hoán vị và số hoán vị 11. + Dạng 2. Chỉnh hợp và số chỉnh hợp 12. + Dạng 3. Tổ hợp và số tổ hợp 13. + Dạng 4. Công thức hoán vị – chỉnh hợp – tổ hợp 14. C BÀI TẬP TỰ LUYỆN 16. D BÀI TẬP TRẮC NGHIỆM 19. §3 – NHỊ THỨC NIU – TƠN 27. A LÝ THUYẾT CẦN NHỚ 27. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 28. + Dạng 1. Khai triển nhị thức Newton 28. + Dạng 2. Tìm hệ số (số hạng) của xk trong khai triển P(x) 28. + Dạng 3. Tìm số hạng có hệ số nhất trong khai triển biểu thức 31. + Dạng 4. Tính tổng bằng cách sử dụng khai triển nhị thức Newton 32. + Dạng 5. Chứng minh các đẳng thức tổ hợp bằng cách sử dụng khai triển nhị thức Newton 32. C BÀI TẬP TỰ LUYỆN 33. D BÀI TẬP TRẮC NGHIỆM 33. §4 – BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ 36. A LÝ THUYẾT CẦN NHỚ 36. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 37. + Dạng 1. Sử dụng công thức tính xác suất của một biến cố 37. + Dạng 2. Sử dụng biến cố đối 41. + Dạng 3. Quy tắc cộng, quy tắc nhân xác suất 42. C BÀI TẬP TỰ LUYỆN 44. D BÀI TẬP TRẮC NGHIỆM 47. §5 – ĐỀ ÔN TẬP CUỐI CHƯƠNG 55. A Đề số 1 55. B Đề số 2 58. C Đề số 3 60. D Đề số 4 62. E Đề số 5 64. F Đề số 6 66. G Đề số 7 68. H Đề số 8 70. §6 – ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 72.
Chuyên đề tổ hợp và xác suất - Lê Minh Tâm
Tài liệu gồm 196 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, trình bày lý thuyết trọng tâm, phương pháp giải các dạng toán và bài tập trắc nghiệm chuyên đề tổ hợp và xác suất (Đại số và Giải tích 11 chương 2). BÀI 01 . QUY TẮC ĐẾM. I. CÁC QUY TẮC ĐẾM. II. BÀI TẬP TỰ LUẬN. III. BÀI TẬP TRẮC NGHIỆM. BÀI 02 . TỔ HỢP – CHỈNH HỢP – HOÁN VỊ. I. HOÁN VỊ. II. CHỈNH HỢP. III. TỔ HỢP. IV. BÀI TẬP TỰ LUẬN. + Dạng 1. BÀI TẬP VỀ HOÁN VỊ. + Dạng 2. BÀI TẬP VỀ CHỈNH HỢP. + Dạng 3. BÀI TẬP VỀ TỔ HỢP. + Dạng 4. CHỨNG MINH ĐẲNG THỨC LIÊN QUAN. + Dạng 5. PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH CÓ CHỨA CÁC SỐ. V. BÀI TẬP TRẮC NGHIỆM. BÀI 03 . NHỊ THỨC NEWTON. I. CÔNG THỨC NHỊ THỨC NEWTON. II. TAM GIÁC PASCAL. III. CÁC DẠNG BÀI TẬP. + Dạng 1. KHAI TRIỂN NHỊ THỨC. + Dạng 2. TÌM HỆ SỐ HOẶC SỐ HẠNG THỎA MÃN ĐIỀU KIỆN. + Dạng 3. CHỨNG MINH HOẶC TÍNH TỔNG. IV. BÀI TẬP RÈN LUYỆN. BÀI 04 . BIẾN CỐ & XÁC SUẤT CỦA BIẾN CỐ. I. PHÉP THỬ VÀ KHÔNG GIAN MẪU. II. BIẾN CỐ & XÁC SUẤT CỦA BIẾN CỐ. III. PHÉP TOÁN TRÊN CÁC BIẾN CỐ. IV. CÁC BIẾN CỐ ĐỘC LẬP, CÔNG THỨC NHÂN XÁC SUẤT. V. CÁC DẠNG BÀI TẬP. + Dạng 1. TÍNH XÁC SUẤT CỦA BIẾN CỐ. + Dạng 2. CÁC QUY TẮC TÍNH XÁC SUẤT. VI. BÀI TẬP TỰ LUẬN. VII. BÀI TẬP TRẮC NGHIỆM. BÀI 05 . TỔNG ÔN TẬP CHƯƠNG. I. QUY TẮC ĐẾM. II. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. III. NHỊ THỨC NEWTON. IV. XÁC SUẤT CỦA BIẾN CỐ.