Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL đầu năm 2018 - 2019 môn Toán 12 trường THPT Lê Văn Thịnh - Bắc Ninh

Đề KSCL đầu năm 2018 – 2019 môn Toán 12 trường THPT Lê Văn Thịnh – Bắc Ninh mã đề 132 được biên soạn theo hình thức tương tự như đề thi THPT Quốc gia với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút, kỳ thi được tổ chức vào ngày 16/09/2018. Nội dung kiểm tra hướng đến gồm: nội dung chương trình Toán 11, chủ đề khảo sát và đồ thị hàm số, khối đa diện và thể tích. Đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL đầu năm 2018 – 2019 môn Toán 12 trường THPT Lê Văn Thịnh – Bắc Ninh : + Cho hàm số y = f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau: (1) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị lớn nhất của f(x) trên [a;b]. (2) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị nhỏ nhất của f(x) trên [a;b]. (3) Nếu hàm số f(x) đạt cực đại tại điểm x0 và đạt cực tiểu tại điểm x1 (x0, x1 ∈ (a;b)) thì ta luôn có f(x0) > f(x1). Số khẳng định đúng là? [ads] + Cho hai đường thẳng cố định a và b chéo nhau. Gọi AB là đoạn vuông góc chung của a và b (A thuộc a, B thuộc b). Trên a lấy điểm M (khác A), trên b lấy điểm N (khác B ) sao cho AM = x, BN = y, x + y = 8. Biết AB = 6, góc giữa hai đường thẳng a và b bằng 60 độ. Khi thể tích khối tứ diện ABNM đạt giá trị lớn nhất hãy tính độ dài đoạn MN (trong trường hợp MN = 8). + Cho hàm số y = (x + 1)/(2 – x). Khẳng định nào sau đây đúng? A. Hàm số đã cho đồng biến trên từng khoảng xác định của nó. B. Hàm số đã cho đồng biến trên khoảng (-∞;2) ∪ (2;+∞). C. Hàm số đã cho đồng biến trên R. D. Hàm số đã cho nghịch biến trên từng khoảng xác định của nó.

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCL Toán 12 lần 3 năm 2019 - 2020 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
Ngày … tháng 05 năm 2020, trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2019 – 2020 lần thi thứ ba, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 (HK2). Đề thi KSCL Toán 12 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc mã đề 068 gồm có 08 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 12 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc : + Cho phương trình (log3 9x)^2 – (m + 5)log3 x + 3m – 10 = 0 (với m là tham số thực). Số giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt thuộc [1;81] là? + Một cái mũ bằng vải của nhà ảo thuật với kích thước như hình vẽ. Hãy tính tổng diện tích vải cần có để làm nên cái mũ đó (không tính viền, mép, phần thừa). + Một hộp đựng 8 viên bi đỏ được đánh số từ 1 đến 8, 6 viên bi xanh được đánh số từ 1 đến 6. Hỏi có bao nhiêu cách chọn 2 viên bi từ hộp đó sao cho 2 viên bi khác màu và khác số. [ads] + Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh a, tâm O. Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với O. Biết tam giác AA’C vuông cân tại A’. Tính khoảng cách h từ điểm D đến mặt phẳng (ABB’A’). + Diện tích phần hình phẳng được gạch chéo trong hình là giới hạn bởi đồ thị hai hàm số y = x^3 – x và y = x^3 + x^2 – x – 1 xác định bởi công thức S bằng tích phân từ -1 đến 1 của ax^3 + bx^2 + cx + d. Giá trị của 2020a + b + c + 2019d bằng?
Đề thi KSCL Toán 12 năm 2019 - 2020 trường chuyên Lê Hồng Phong - Nam Định
Thứ Hai ngày 25 tháng 05 năm 2020, trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2019 – 2020. Đề thi KSCL Toán 12 năm 2019 – 2020 trường chuyên Lê Hồng Phong – Nam Định bám sát cấu trúc đề tham khảo tốt nghiệp THPT Quốc gia môn Toán của Bộ GD&ĐT, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 12 năm 2019 – 2020 trường chuyên Lê Hồng Phong – Nam Định : + Cho hình hộp ABCD. A’B’C’D’ có đáy ABCD là hình thoi tâm O và cạnh bằng a, góc BAC = 60 độ. Gọi I, J lần lượt là tâm của các mặt bên ABB’A’, CDD’C’. Biết AI = a√7/2, AA’ = 2a và góc giữa hai mặt phẳng (ABB’A’), (A’B’C’D’) bằng 60 độ. Tính theo a thể tích của khối tứ diện AOIJ. + Cho hình nón có đỉnh S và đáy là hình tròn tâm O. Biết rằng chiều cao của nón bằng a và bán kính đáy nón bằng 2a. Một mặt phẳng (P) đi qua đỉnh S và cắt đường tròn đáy nón tại hai điểm A, B mà AB = 2a√3. Hãy tính theo a diện tích mặt cầu ngoại tiếp của khối tứ diện SOAB. [ads] + Có 6 học sinh gồm 2 học sinh lớp A, 2 học sinh lớp B và 2 học sinh lớp C xếp ngẫu nhiên thành một hàng ngang. Tính xác suất để nhóm bất kì 3 học sinh liền kề nhau trong hàng luôn có mặt học sinh của ba lớp A, B, C. + Cho hình tứ diện đều ABCD có cạnh bằng a. Gọi M là trung điểm của cạnh AD (tham khảo hình vẽ dưới). Tính khoảng cách giữa hai đường thẳng AB và CM theo a. + Cho tam giác đều ABC có diện tích bằng s1 và AH là đường cao. Quay tam giác ABC quanh đường thẳng AH ta thu được hình nón có diện tích xung quanh bằng s2. Tính s1/s2.
Đề khảo sát chất lượng Toán 12 năm học 2019 - 2020 sở GDĐT Phú Thọ
Thứ Sáu ngày 15 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Phú Thọ tổ chức kỳ thi khảo sát chất lượng môn Toán đối với học sinh lớp 12 THPT năm học 2019 – 2020. Đề khảo sát chất lượng Toán 12 năm học 2019 – 2020 sở GD&ĐT Phú Thọ được biên soạn bám sát cấu trúc đề minh họa kỳ thi tốt nghiệp THPT 2020 môn Toán lần 2 do Bộ Giáo dục và Đào tạo công bố; đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề khảo sát chất lượng Toán 12 năm học 2019 – 2020 sở GD&ĐT Phú Thọ : + Cho đa giác đều (H) có 30 đỉnh. Lấy tùy ý 3 đỉnh của (H). Xác suất để 3 đỉnh lấy được tạo thành một tam giác tù bằng? + Cho hàm số y = f(x) có đồ thị như hình vẽ. Số giá trị nguyên của tham số m để đường thẳng y = m cắt đồ thị hàm số đã cho tại ba điểm phân biệt là? [ads] + Cho hình nón có thiết diện qua trục là tam giác vuông cân có cạnh huyền bằng a√2. Diện tích xung quanh của hình nón đã cho bằng? + Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng đi qua đỉnh của hình nón và cắt hình nón theo một thiết diện là tam giác vuông SAB có diện tích bằng 4a2. Góc giữa trục SO và mặt phẳng (SAB) bằng 30 độ. Diện tích xung quanh của hình nón đã cho bằng? + Cho hàm số y = f(x) liên tục trên R thỏa mãn f(-1) = 5 và f(-3) = 0 và có bảng xét dấu đạo hàm như sau. Số giá trị nguyên dương của tham số m để phương trình 3f(2 – x) + √(x^2 + 4) – x = m có nghiệm trong khoảng (3;5) là?
Đề khảo sát lần 1 Toán 12 năm 2019 - 2020 THPT Phú Xuyên B - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát lần 1 Toán 12 năm 2019 – 2020 trường THPT Phú Xuyên B – Hà Nội, kỳ thi nhằm kiểm tra chất lượng môn Toán thường xuyên đối với học sinh khối 12. Đề khảo sát lần 1 Toán 12 năm 2019 – 2020 THPT Phú Xuyên B – Hà Nội mã đề 118 gồm 06 trang với 50 câu, học sinh có 90 phút để làm bài, đề thi có đáp án mã đề 118, 211, 317, 412. Trích dẫn đề khảo sát lần 1 Toán 12 năm 2019 – 2020 THPT Phú Xuyên B – Hà Nội : + Cho hàm sốy = x^3 – 3(m + 1)x^2 + 3(7m – 3)x. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số không có cực trị. Số phần tử của S là? + Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y = (x – m^2 – 2)/(x – m) trên đoạn [0;4] bằng −1. [ads] + Chị Lan có 400 triệu đồng mang đi gửi tiết kiệm ở hai loại kì hạn khác nhau đều theo thể thức lãi kép. Chị gửi 200 triệu đồng theo kì hạn quý với lãi suất 2,1% một quý, 200 triệu đồng còn lại chị gửi theo kì hạn tháng với lãi suất 0,73% một tháng. Sau khi gửi được đúng 1 năm, chị rút ra một nửa số tiền ở loại kì hạn theo quý và gửi vào loại kì hạn theo tháng. Hỏi sau đúng 2 năm kể từ khi gửi tiền lần đầu, chị Lan thu được tất cả bao nhiêu tiền lãi (làm tròn đến hàng nghìn)? + Một sợi dây có chiều dài 28m được cắt thành hai đoạn để làm thành một hình vuông và một hình tròn. Tính chiều dài (theo đợn vị mét) của đoạn dây làm thành hình vuông được cắt ra sao cho tổng diện tích của hình vuông và hình tròn là nhỏ nhất? + 9. Đường thẳng y = k(x + 2) + 3 cắt đồ thị hàm số y = x^3 + 3x^2 – 1 (1) tại 3 điểm phân biệt, tiếp tuyến với đồ thị (1) tại 3 giao điểm đó lại cắt nhau tại 3 điểm tạo thành một tam giác vuông. Mệnh đề nào dưới đây là đúng?