Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên)

Nội dung Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) Ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán cho năm học 2020 - 2021. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 - 2021 sở GD&ĐT Nam Định (Đề chuyên) được thiết kế dành cho học sinh muốn thi vào các lớp chuyên Toán. Đề bao gồm 01 trang với 05 bài toán, thời gian làm bài thi được xác định là 150 phút. Trích dẫn một số bài toán từ đề Toán tuyển sinh lớp 10 chuyên năm 2020 - 2021 sở GD&ĐT Nam Định (Đề chuyên): 1. Cho tam giác nhọn ABC có AB < AC nội tiếp đường tròn (O). Một đường tròn tiếp xúc với các cạnh AB, AC tại M, N và có tâm I thuộc cạnh BC. Kẻ đường cao AH của tam giác ABC. Câu hỏi đưa ra gồm các phần a, b, c liên quan đến quan hệ giữa các điểm A, M, H, I, N và chứng minh một số tính chất của tam giác ABC. 2. Đề bài thứ hai liên quan đến việc chứng minh một bất đẳng thức với điều kiện a + b + c = 1 và a, b, c là các số thực không âm. 3. Bài toán cuối cùng liên quan đến việc chia sỏi trong túi theo quy trình nhất định và đặt ra câu hỏi về khả năng tạo ra trường hợp mỗi túi có đúng 2 viên sỏi sau một số bước nhất định. Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) mang đến những thách thức và cơ hội cho các học sinh yêu thích môn Toán, giúp họ thể hiện khả năng và kiến thức của mình trong kỳ thi tuyển sinh vào lớp 10 THPT chuyên.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Bình Định
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Bình Định dành cho các thí sinh thi vào các lớp chuyên Toán; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Bình Định : + Tìm tất cả các số nguyên tố p và q sao cho p3 + 3pq + q3 là một số chính phương. + Cho tam giác ABC cân tại A (với BAC < 60◦) nội tiếp đường tròn (O). Gọi M là điểm bất kì trên cung nhỏ BC. Chứng minh rằng MA > MB + MC. + Cho tam giác ABC nhọn (AB < AC) nội tiếp trong đường tròn tâm O. Gọi D là trung điểm cạnh BC và E, F tương ứng là hình chiếu vuông góc của D lên AC và AB. Đường thẳng EF cắt các đường thẳng AO và BC theo thứ tự M và N. (a) Chứng minh tứ giác AMDN nội tiếp. (b) Gọi K là giao điểm của AB và ED, L là giao điểm của AC và FD, H là trung điểm của KL và I là tâm đường tròn ngoại tiếp tam giác AEF. Chứng minh HI ⊥ EF.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 trường THPT chuyên Thái Bình
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên Thái Bình được dành cho các thí sinh thi vào các lớp chuyên Toán và chuyên Tin học; kỳ thi được tổ chức ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên Thái Bình : + Cho biểu thức P = (x − 2)2x + 2√x − 1. Tìm số tự nhiên x lớn nhất có hai chữ số để P có giá trị là số chính phương. + Cho P(x) là một đa thức có tất cả các hệ số đều là số nguyên thoả mãn P(0) = 21; P(1) = 7. Chứng minh rằng P(x) không có nghiệm nguyên. + Giả sử phương trình 2×2 + 2ax + 1 − b = 0 có hai nghiệm nguyên (với a, b lần lượt là tham số). Chứng minh rằng a2 − b2 + 2 là số nguyên và không chia hết cho 3.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Vĩnh Long
Chủ Nhật ngày 19 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Vĩnh Long tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Long gồm có 01 trang với 07 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Long : + Một người dự định đi xe máy từ Vĩnh Long đến Sóc Trăng cách nhau 90 km. Vì có việc gấp cần đến Sóc Trăng trước giờ dự định 27 phút, nên người ấy phải tăng vận tốc thêm 10 km/h. Hãy tính vận tốc xe máy mà người đó dự định đi. + Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4 cm, CH = 9 cm. a) Tính độ dài đường cao AH và số đo ABH (làm tròn đến độ). b) Vẽ đường trung tuyến AM của tam giác ABC (M thuộc BC), tính diện tích tam giác AHM. [ads] + Cho nửa đường tròn tâm O đường kính AB. Vẽ đường thẳng d vuông góc với OA tại M (M khác O, A). Trên d lấy điểm N sao cho N nằm bên ngoài nửa đường tròn (O). Kẻ tiếp tuyến NE với nửa đường tròn (O) (E là tiếp điểm, E và A nằm cùng một phía đối với đường thẳng d). a) Chứng minh tứ giác OMEN nội tiếp được đường tròn. b) Nối NB cắt nửa đường tròn (O) tại C. Chứng minh NE^2 = NC.NB. c) Gọi H là giao điểm của AC và d, F là giao điểm của tia EH và nửa đường tròn (O). Chứng minh NEF = NOF.
Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GDĐT Vĩnh Phúc
Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 02 phần: phần trắc nghiệm gồm 04 câu, chiếm 02 điểm, phần tự luận gồm 04 câu, chiếm 08 điểm, thời gian làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc : + Cho parabol (P): y = 1/2.x^2 và đường thẳng d: y = 2x + m (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thoả mãn (x1x2 + 1)^2 = x1 + x2 + x1x2 + 3. + Một đội xe theo kế hoạch mỗi ngày chở số tấn hàng như nhau và dự định chở 140 tấn hàng trong một số ngày. Do mỗi ngày đội xe đó chở vượt mức 5 tấn nên đội xe đã hoàn thành kế hoạch sớm hơn thời gian dự định 1 ngày và chở thêm được 10 tấn hàng. Hỏi số ngày dự định theo kế hoạch là bao nhiêu? [ads] + Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ điểm A kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm). Kẻ đường kính BD của đường tròn (O). Đường thẳng đi qua O vuông góc với đường thẳng AD và cắt AD, BC lần lượt tại K, E. Gọi I là giao điểm của OA và BC. a) Chứng minh rằng các tứ giác ABOC, AIKE nội tiếp đường tròn. b) Chứng minh rằng OI.OA = OK.OE. c) Biết OA = 5 cm, đường tròn (O) có bán kính R = 3cm. Tính độ dài đoạn thẳng BE.