Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên)

Nội dung Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) Ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán cho năm học 2020 - 2021. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 - 2021 sở GD&ĐT Nam Định (Đề chuyên) được thiết kế dành cho học sinh muốn thi vào các lớp chuyên Toán. Đề bao gồm 01 trang với 05 bài toán, thời gian làm bài thi được xác định là 150 phút. Trích dẫn một số bài toán từ đề Toán tuyển sinh lớp 10 chuyên năm 2020 - 2021 sở GD&ĐT Nam Định (Đề chuyên): 1. Cho tam giác nhọn ABC có AB < AC nội tiếp đường tròn (O). Một đường tròn tiếp xúc với các cạnh AB, AC tại M, N và có tâm I thuộc cạnh BC. Kẻ đường cao AH của tam giác ABC. Câu hỏi đưa ra gồm các phần a, b, c liên quan đến quan hệ giữa các điểm A, M, H, I, N và chứng minh một số tính chất của tam giác ABC. 2. Đề bài thứ hai liên quan đến việc chứng minh một bất đẳng thức với điều kiện a + b + c = 1 và a, b, c là các số thực không âm. 3. Bài toán cuối cùng liên quan đến việc chia sỏi trong túi theo quy trình nhất định và đặt ra câu hỏi về khả năng tạo ra trường hợp mỗi túi có đúng 2 viên sỏi sau một số bước nhất định. Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) mang đến những thách thức và cơ hội cho các học sinh yêu thích môn Toán, giúp họ thể hiện khả năng và kiến thức của mình trong kỳ thi tuyển sinh vào lớp 10 THPT chuyên.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THPT Gang Thép - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi thử tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT Gang Thép, tỉnh Thái Nguyên; đề thi hình thức tự luận với 10 bài toán, thời gian làm bài 120 phút; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THPT Gang Thép – Thái Nguyên : + Cho hàm số y = 2×2, có đồ thị là đường Parabol (P). a) Không tính giá trị của hàm số, hãy cho biết khi x nhận giá trị là các số thực tăng dần từ 2023 đến 2024 thì giá trị tương ứng của hàm số tăng dần hay giảm dần? Vì sao? b) Tìm giá trị của tham số m để Parabol (P) cắt đường thẳng (d): y = mx + 3 tại điểm A có hoành độ bằng 1. + Quãng đường Thái Nguyên – Hải Phòng dài 150km. Một ô tô từ Thái Nguyên đi Hải Phòng, nghỉ lại ở Hải Phòng hết 3 giờ 15 phút, rồi trở lại Thái Nguyên, hết tất cả 10 giờ. Tính vận tốc của ô tô lúc về, biết rằng vận tốc lúc đi lớn hơn vận tốc lúc về là 10km/h. + Cho đường tròn (O;OA). Điểm I thuộc đoạn thẳng OA sao cho AI = 1/3AO. Vẽ đường tròn (I;IA). a) Xác định vị trí tương đối của các đường tròn (O) và (I). b) Kẻ một đường thẳng qua A, cắt các đường tròn (I) và (O) theo thứ tự ở B và C. Tính tỉ số AB/AC.
Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THCS Lê Lợi - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Lê Lợi, tỉnh Thanh Hóa; đề thi có đáp án và hướng dẫn giải. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THCS Lê Lợi – Thanh Hóa : + Cho hàm số: y = ax + b. Tìm a, b biết đồ thị của hàm số đã cho song song với đường thẳng (1 d): y = 3x – 5 và đi qua giao điểm Q của hai đường thẳng (2 d): y = 2x – 3; (3 d): y = – 3x + 2. + Tìm các giá trị của tham số m để phương trình 2 2 x 2 (m 1) x m 0 có hai nghiệm phân biệt 1 2 x x thỏa mãn hệ thức 2 1 2 1 2 x x 6m x 2x. + Cho tam giác ABC nhọn (AB < AC). Đường cao BD, CE cắt nhau ở H. DE cắt BC ở F. M là trung điểm của BC. Chứng minh rằng: 1) Tứ giác BEDC là tứ giác nội tiếp. 2) FE. FD = FB. FC. 3) FH vuông góc với AM.
Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THCS Minh Khai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Minh Khai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 24 tháng 02 năm 2023. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THCS Minh Khai – Hà Nội : + Cho đường thẳng (d): y = -x + 2m – 1 a) Tìm m để đường thẳng (d) đi qua điểm Q(1;-2). b) Tìm m để đường thẳng (d) và đường thẳng (d’): y = 2x − 3 cắt nhau tại một điểm nằm về phía bên trái trục tung. + Cho tam giác ABC. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc BC, AB lần lượt tại D và E. a) Chứng minh bốn điểm B; D; O; E cùng thuộc một đường tròn. b) Kẻ đường kính DF của (O). Tiếp tuyến của (O) tại F cắt AB; AC lần lượt tại P và Q. Chứng minh tam giác BOP vuông. c) Kéo dài AF cắt BC tại M. Chứng minh: BD = CM. + Cho a, b, c là độ dài ba cạnh của tam giác thoả mãn: 2c + b = abc. Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi thử Toán vào lớp 10 chuyên năm 2023 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2022 – 2023 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 02 năm 2023. Trích dẫn Đề thi thử Toán vào lớp 10 chuyên năm 2023 trường THCS Cầu Giấy – Hà Nội : + Cho P(x) là đa thức với hệ số nguyên thỏa mãn P(2021).P(2022) = 2023. Hỏi đa thức P(x) có nghiệm nguyên hay không? + Cho tam giác ABC nhọn không cân (AB < AC) các đường cao AD, BE, CF cắt nhau tại H. Lấy các điểm P, Q trên BE, CF sao cho EFPQ là hình bình bình hành có giao hai đường chéo là H. Đường tròn ngoại tiếp tam giác DPQ cắt lại BE, CF lần lượt tại K, L (K khác P, L khác Q), đường thẳng AD cắt EF tại I, gọi M là trung điểm của AC. a. Chứng minh: HI FI HD FD và 4 điểm D, M, E, F nằm trên một đường tròn. b. Gọi G là giao điểm của PQ với AD, N là giao điểm của DM với HC. Chứng minh: KL // BC và các tam giác PDG, LDN đồng dạng. c. Chứng minh: M, K, L thẳng hàng. + Trong 100 số lẻ đầu tiên 1, 3, 5, 7, 9, …, 199 hãy tìm số tự nhiên k bé nhất sao cho khi chọn k số tùy ý trong số 100 số trên bao giờ cũng có 2 số mà một trong 2 số đó là bội của số còn lại.