Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chất lượng Toán 9 năm 2022 - 2023 trường THCS Đống Đa - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Đống Đa, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 02 năm 2023. Trích dẫn Đề kiểm tra chất lượng Toán 9 năm 2022 – 2023 trường THCS Đống Đa – Hà Nội : + Giải bài toán sau bằng cách lập hệ phương trình: Theo kế hoạch, hai xí nghiệp A và B phải làm tổng cộng 750 đơn hàng. Thực tế, xí nghiệp A làm nhiều hơn 10% và xí nghiệp B làm ít hơn 5% so với dự định nên cả hai xí nghiệp làm được 765 đơn hàng. Tìm số đơn hàng mà mỗi xí nghiệp phải làm theo kế hoạch. + Cho hệ phương trình: Tìm tất cả các số nguyên m để hệ phương trình trên có nghiệm duy nhất (x;y) sao cho x và y là các số nguyên. + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại điểm D. Gọi điểm M là trung điểm của dây BC. 1) Chứng minh: Bốn điểm A, D, O, M cùng thuộc một đường tròn. 2) Tia OM cắt đường tròn (O) tại điểm E, hai đoạn thẳng AE và BC cắt nhau tại điểm G. Chứng minh: Điểm E nằm chính giữa cung BC và AB.AC = AE.AG. 3) Tia phân giác của góc ABC cắt AE tại điểm I. Giả sử dây AB cố định và điểm C di chuyển trên đường tròn (O) sao cho tam giác ABC nhọn(AB < AC). Chứng tỏ điểm I luôn nằm trên một đường tròn cố định.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 9 tháng 9 năm 2019 - 2020 trường Archimedes Academy - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng định kỳ môn Toán đối với học sinh khối lớp 9, vừa qua, trường THCS Archimedes Academy – Hà Nội đã tổ chức kỳ thi kiểm tra tập trung Toán 9 tháng 9 năm học 2019 – 2020. Đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội gồm 2 mã đề: đề số 1 và đề số 2, đề thi gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút. [ads] Trích dẫn đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội : + Cho đường tròn (O), đường kính AB = 2R. Gọi M là trung điểm của OB, đường thẳng d luôn đi qua M cắt (O) tại C và D. Gọi H là trung điểm của CD. a) Chứng minh H thuộc đường tròn đường kính OM. b) Giả sử CD = R√3, tính độ dài OH theo R và số đo góc COD. c) Gọi I là trực tâm của tam giác ACD. Chứng minh H là trung điểm của BI. d) Cho đường thẳng d thay đổi và luôn đi qua M. Chứng minh điểm I luôn nằm trên một đường tròn cố định. + Cho x, y, z là các số thực không âm thỏa mãn x + y + z = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức N = √(x + y) + √(y + z) + √(z + x).
Đề khảo sát đầu năm Toán 9 năm 2019 - 2020 trường Thanh Xuân - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng đầu năm học 2019 – 2020 để theo dõi tiến độ học tập của học sinh, vừa qua, trường THCS Thanh Xuân, Hà Nội đã tổ chức kỳ kiểm tra khảo sát đầu năm môn Toán 9 năm học 2019 – 2020. Đề khảo sát đầu năm Toán 9 năm 2019 – 2020 trường Thanh Xuân – Hà Nội với các bài toán thuộc chương trình Toán lớp 8, đề gồm 05 bài toán dạng tự luận. Trích dẫn đề khảo sát đầu năm Toán 9 năm 2019 – 2020 trường Thanh Xuân – Hà Nội : + Cho hình thang ABCD biết góc A = 90 độ, góc D = 90 độ và AB < DC. Hai đường chéo AC và BD vuông góc với nhau tại O. a) Cho AB = 9 cm và AD = 12 cm. Hãy: Tính tỉ số lượng giác của các góc nhọn và cạnh BD của tam giác ADB. Tính độ dài các đoạn thẳng AO, DO và AC. Kẻ BH vuông góc với DC tại H. Tính diện tích tam giác DOH. b) Chứng minh BH^2 = AB.CD. + Cho 2016 < x < 2017. Tìm giá trị nhỏ nhất của: S = 1/(x – 2016)^2 + 1/(2017 – x)^2 + 1/(x – 2016)(2017 – x).
Đề kiểm tra Toán 9 tháng 9 năm 2019 - 2020 trường THCS Bế Văn Đàn - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng học tập môn Toán của học sinh khối lớp 9 theo định kỳ hàng tháng, vừa qua, trường THCS Bế Văn Đàn, quận Đống Đa, Hà Nội đã tổ chức kỳ kiểm tra tập trung môn Toán 9 tháng 9 năm học 2019 – 2020. Đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường THCS Bế Văn Đàn – Hà Nội gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường THCS Bế Văn Đàn – Hà Nội : + Vịnh Hạ Long được biết đến không chỉ là di sản thế giới UNESSCO mà còn là một trong những kì quan thiên nhiên nổi tiếng thế giới. Vịnh Hạ Long thuộc tỉnh Quảng Ninh cách Hà Nội 180km. có 2 xe ô tô khởi hành cùng một lúc và ngược chiều nhau, sau 1 giờ 30 phút thì hai xe gặp nhau. Biết vận tốc của xe ô tô đi từ Hà Nội nhanh hơn vận tốc của xe ô tô đi từ Vịnh Hạ Long là 20km/h. Tính vận tốc mỗi xe. [ads] + Một bể bơi tiêu chuẩn có chiều dài 50m, chiều rộng 25m và chiều cao 2,3m. Người ta bơm nước vào bể sao cho nước cách mép bể 0,5m. Tính thể tích nước trong bể? + Cho a, b, c là các số thực dương tùy ý. Chứng minh rằng: (bc/a + ca/b + ab/c) ≥ a + b + c.
Đề thi thử Toán 9 năm 2019 trường THPT chuyên KHTN Hà Nội (Vòng 2 Đợt 4)
Đề thi thử Toán 9 năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4) gồm 1 trang với 4 bài toán dạng tự luận, học sinh làm bài trong khoảng thời gian 150 phút, kỳ thi nhằm giúp học sinh ôn tập để chuẩn bị cho kỳ thi Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2019 – 2020. Trích dẫn đề thi thử Toán 9 năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4) : + Với a, b, c là các số thực dương thỏa mãn ab + bc + ca = 1. Tìm giá trị lớn nhất của biểu thức P = a/(1 + a^2) + b/(1 + b^2) – c/(1 + c^2). [ads] + Cho tam giác ABC nhọn nội tiếp trong đường tròn (O). Tiếp tuyến qua B, C của (O) cắt nhau tại T. Đường thẳng qua T song song với OA cắt trung trực CA, AB lần lượt tại các điểm E, F. 1) Chứng minh rằng hai tam giác OEF và ABC đồng dạng. 2) Gọi J là tâm đường tròn ngoại tiếp tam giác OEF. Chứng minh rằng DJ || BC. 3) Gọi K là trực tâm tam giác OEF. Chứng minh rằng AT chia đôi đoạn thẳng OK. + Với x > 1, chứng minh rằng từ tập con A có n + 2 số của tập {1, 2, 3 … 3n} luôn có thể chọn ra 2 số mà hiệu của chúng lớn hơn n và nhỏ thua 2n.