Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Yên Lạc Vĩnh Phúc

Nội dung Đề giao lưu HSG lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Yên Lạc Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi giao lưu HSG lớp 7 môn Toán năm 2018 - 2019 phòng GD ĐT Yên Lạc Vĩnh Phúc Đề thi giao lưu HSG lớp 7 môn Toán năm 2018 - 2019 phòng GD ĐT Yên Lạc Vĩnh Phúc Xin chào quý thầy cô và các em học sinh! Sytu hân hạnh giới thiệu đến các bạn đề thi giao lưu học sinh giỏi môn Toán lớp 7 năm học 2018 - 2019 của phòng GD&ĐT huyện Yên Lạc, tỉnh Vĩnh Phúc. Đề thi bao gồm các câu hỏi sau: 1. Cho ba hình chữ nhật, biết diện tích của hình thứ nhất và diện tích của hình thứ hai tỉ lệ với 4 và 5, diện tích hình thư hai và diện tích hình thứ ba tỉ lệ với 7 và 8, hình thứ nhất và hình thứ hai có cùng chiều dài và tổng các chiều rộng của chúng là 27 cm, hình thứ hai và hình thứ ba có cùng chiều rộng, chiều dài của hình thứ ba là 24 cm. Hãy tính diện tích của mỗi hình chữ nhật đó. 2. Xét hình bên: Ta viết các số 1, 2, 3, 4,...9 vào vị trí của 9 điểm trong hình vẽ bên sao cho mỗi số chỉ xuất hiện đúng một lần và tổng ba số trên một cạnh của tam giác bằng 18. Hỏi có bao nhiêu cách viết phân biệt? Và tại sao? 3. Tìm số hữu tỉ x sao cho tổng của số đó với nghịch đảo của nó có giá trị là một số nguyên. Hy vọng đề thi sẽ giúp các em rèn luyện và nâng cao kiến thức, kỹ năng giải quyết vấn đề. Chúc các em thi tốt và đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 7 năm 2022 - 2023 phòng GDĐT Hà Trung - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi văn hóa môn Toán 7 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Hà Trung, tỉnh Thanh Hóa; đề thi gồm 05 câu – 01 trang, thời gian 150 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Hà Trung – Thanh Hóa : + Cho a, b, c là ba số thực khác 0, thoả mãn điều kiện: b c a b a b c a c a b c. Hãy tính giá trị của biểu thức b c c a a b B 1 1 1. + Tìm giá trị nguyên dương của x và y, sao cho: 1/x + 1/y = 1/5. Tìm x; y; z biết: 2x = 3y; 4y = 5z và 4x – 3y + 5z = 7. Với n là số tự nhiên, chứng minh rằng: n2 + 2022 không phải là số chính phương. + Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. a. Chứng minh rằng: DM = EN. b. MN cắt BC tại I. Chứng minh I là trung điểm của MN. c. Chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
Đề giao lưu HSG Toán 7 năm 2022 - 2023 phòng GDĐT Cẩm Thủy - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi cấp trường môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cẩm Thủy, tỉnh Thanh Hoá; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Cẩm Thủy – Thanh Hoá : + Số A được chia thành ba phần số tỉ lệ theo 231 546. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. + Biết f x chia cho x – 3 thì dư 7; chia cho x – 2 thì dư 5; chia cho (x – 3).(x – 2) được thương là 3x và còn dư. Tìm f x. + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ∆ADC = ∆ABE. b) Chứng minh rằng: = 600. c) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng ∆AMN đều. d) Chứng minh rằng IA là phân giác của góc DIE.
Đề HSG Toán 7 năm 2022 - 2023 cụm chuyên môn 3T-H-G Bình Xuyên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp trường môn Toán 7 năm học 2022 – 2023 cụm chuyên môn 3T-H-G trực thuộc phòng GD&ĐT huyện Bình Xuyên, tỉnh Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 7 năm 2022 – 2023 cụm chuyên môn 3T-H-G Bình Xuyên – Vĩnh Phúc : + Ba lớp 7A, 7B, 7C cùng tham gia trồng cây trong vườn trường, lúc đầu thầy phụ trách dự định giao số cây trồng cho ba lớp tỉ lệ với 5:6:7 nhưng sau đó thầy giao theo tỉ lệ 4:5:6 nên có một lớp trồng nhiều hơn dự định 4 cây. Tính tổng số cây mà ba lớp đã trồng. + Cho tam giác ABC có ba góc nhọn (AB AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. a) Chứng minh rằng DC = BE. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng AMN đều. + Cho tam giác ABC cân tại A, gọi D là trung điểm của AC. Trên đoạn BD lấy điểm E sao cho DAE ABD. Chứng minh rằng DAE ECB.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Hậu Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hậu Lộc, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Bảy ngày 25 tháng 02 năm 2023. Trích dẫn đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Hậu Lộc – Thanh Hóa : + Số A được chia thành ba phần tỉ lệ theo. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. + Cho a, b, c, d là các số nguyên thỏa mãn a2 = b2 + c2 + d2. Chứng minh rằng: abcd + 2023 viết được dưới dạng hiệu của hai số chính phương. + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE và EIB = 60. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh: AMN đều. c) Chứng minh rằng: IA là phân giác của góc DIE.