Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 10 năm 2018 - 2019 trường THPT Đoàn Thượng - Hải Dương

Đề thi HK1 Toán 10 năm học 2018 – 2019 trường THPT Đoàn Thượng – Hải Dương mã đề 132 gồm 05 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, thời gian làm bài thi 90 phút, các câu hỏi trong đề được đánh số thể hiện độ khó của câu hỏi, đề thi có đáp án. Trích dẫn đề thi HK1 Toán 10 năm 2018 – 2019 trường THPT Đoàn Thượng – Hải Dương : + Biết rằng số học sinh của 1 lớp học là số tự nhiên có hai chữ số ab (1 ≤ a ≤ 5). Trong tiết hội giảng một cô giáo muốn chia lớp thành các nhóm học tập. Nếu cô giáo chia mỗi nhóm có đúng 4 hoặc 5 học sinh thì đều còn dư 1 học sinh, nếu cô giáo chia mỗi nhóm có đúng 3 học sinh thì còn dư 2 học sinh. Hỏi a^2 + b^2 bằng? [ads] + Tìm mệnh đề đúng trong các mệnh đề sau? A. Hải Dương là thủ đô của Việt Nam. B. Hưng Yên là thủ đô của Việt Nam. C. Hà Nội là thủ đô của Việt Nam. D. Hải Phòng là thủ đô của Việt Nam. + Tìm mệnh đề phủ định của mệnh đề ‘Mọi số tự nhiên lẻ đều chia hết cho 3’: A. Mọi số tự nhiên chẵn đều chia hết cho 3. B. Tồn tại số tự nhiên lẻ không chia hết cho 3. C. Tồn tại số tự nhiên chẵn chia hết cho 3. D. Tồn tại số tự nhiên lẻ chia hết cho 3.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Hoàng Hoa Thám TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Hoàng Hoa Thám TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Hoàng Hoa Thám, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Hoàng Hoa Thám – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(2;-1), B(3;2), C(0;3). a) Tìm tọa độ điểm N sao cho ABCN là hình bình hành. b) Tìm tọa độ điểm H là giao điểm của đường thẳng AB và trục tung. + Lập bảng biến thiên và vẽ đồ thị (P) của hàm số y = x2 + 4x. + Cho 3tanx + 5 = 0 với x là góc tù. Tính giá trị biểu thức P = 4cosx/(sinx)^2.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Lý Thái Tổ TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Lý Thái Tổ TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Lý Thái Tổ, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Lý Thái Tổ – TP HCM : + Tìm m để phương trình có hai nghiệm thỏa điều kiện. + Tìm tập xác định của các hàm số. + Xét sự biến thiên và vẽ đồ thị của hàm số: y = 2×2 – 4x + 2.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường TH Thực hành Sài Gòn TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường TH Thực hành Sài Gòn TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường Trung học Thực hành Sài Gòn – TP HCM : + Trong mặt phẳng tọa độ, cho ba điểm A(-1;4); B(2;5); C(3;-8). a) Chứng minh rằng tam giác ABC vuông. Tính diện tích tam giác ABC. b) Tìm tọa độ H là hình chiếu vuông góc của A trên đường thẳng BC. c) Tìm tọa độ điểm D trên trục tung và có tung độ nhỏ hơn 3 sao cho tam giác ABD cân tại A. + Giải các phương trình và hệ phương trình sau. + Cho biết sin x = 2/9 (90 < x < 180). Tính cos x; tan x; cot2 (180 – x).
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Giồng Ông Tố TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Giồng Ông Tố TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Giồng Ông Tố, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Giồng Ông Tố – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(1;4), B(-2;-1), C(3;1). 1) Tính chu vi tam giác ABC. 2) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. 3) Tìm trên trục hoành điểm P sao cho tổng khoảng cách từ P tới hai điểm A và B là nhỏ nhất. + Cho tam giác ABC có BC = 9, AB = 7 và AC = 8. Tính bán kính đường tròn nội tiếp tam giác ABC. + Cho hàm số y = ax2 + bx + 2 có đồ thị là (P). Tìm phương trình của (P).