Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề giải toán bằng cách lập phương trình

Nội dung Chuyên đề giải toán bằng cách lập phương trình Bản PDF - Nội dung bài viết Chuyên Đề Giải Toán Bằng Cách Lập Phương Trình Chuyên Đề Giải Toán Bằng Cách Lập Phương Trình Tài liệu này bao gồm 39 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, từ cơ bản đến nâng cao, trong chuyên đề giải toán bằng cách lập phương trình. Bạn sẽ được tuyển chọn các bài tập có độ khó phù hợp, và hỗ trợ trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. Kiến Thức Cần Nhớ Bước 1: Lập phương trình: Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số. Biểu diễn các đại lượng chưa biết theo ẩn và đã biết. Lập phương trình biểu thị mối quan hệ giữa các đại lượng. Bước 2: Giải phương trình. Bước 3: Kiểm tra nghiệm của phương trình để xác định nghiệm nào thỏa mãn điều kiện của ẩn. II. Bài Tập Minh Họa Phương pháp chung: Bước 1: Kẻ bảng nếu cần, gọi ẩn, kèm theo đơn vị và điều kiện cho ẩn. Bước 2: Giải thích từng ô trong bảng để lập phương trình bậc hai. Bước 3: Giải phương trình, đối chiếu điều kiện và trả lời bài toán. Các dạng toán: Dạng 1: Toán chuyển động. Dạng 2: Toán năng suất. Dạng 3: Toán làm chung công việc. Dạng 4: Toán có nội dung hình học. Dạng 5: Dạng toán có chứa tham số. Dạng 6: Toán về tỉ lệ chia phần. Dạng 7: Dạng toán liên quan đến số học. Dạng 8: Dạng toán có nội dung vật lý, hóa học. Hãy sẵn sàng thách thức bản thân và rèn luyện kỹ năng giải toán bằng cách lập phương trình với tài liệu hữu ích này!

Nguồn: sytu.vn

Đọc Sách

Hướng dẫn ôn tập giữa kì 1 Toán 8 năm 2022 - 2023 THCS Thanh Am - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn ôn tập giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Thanh Am, quận Long Biên, thành phố Hà Nội. I. Nội dung ôn tập 1.1. Đại số. – Quy tắc nhân đa thức. – Các hẳng đẳng thức đáng nhớ. – Các phương pháp phân tích đa thức thành nhân tử. – Chia đa thức một biến đã sắp xếp. 1.2. Hình học. – Định lý tổng các góc trong một tứ giác. – Định nghĩa, tính chất, dấu hiệu nhận biết của các tứ giác đặc biệt: hình thang cân, hình bình hành, hình chữ nhật. – Định nghĩa, tính chất đường trung bình của tam giác, hình thang. – Đối xứng trục, đối xứng tâm. II. Một số bài tập cụ thể
Đề cương Toán 8 giữa kỳ 1 năm 2022 - 2023 trường Nguyễn Tất Thành - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn ôn tập môn Toán 8 giữa học kỳ 1 năm học 2022 – 2023 trường THCS & THPT Nguyễn Tất Thành, thành phố Hà Nội. I. Phạm vi ôn tập 1. Đại số 8: Ôn tập từ đầu đến hết bài phân tích đa thức thành nhân tử. 2. Hình học 8: Ôn tập từ đầu đến hết bài hình bình hành, đối xứng tâm. II. Bài tập tham khảo A. Bài tập trắc nghiệm: Gồm 14 câu trắc nghiệm Toán 8. B. Bài tập tự luận: Gồm 14 câu tự luận Toán 8.
Bồi dưỡng năng lực và phát triển tư duy học môn Toán 8
Tài liệu gồm 394 trang, được biên soạn bởi tác giả Toán Họa, bao gồm các kiến thức cơ bản, hướng dẫn mẫu, bài tập tự luận và bài tập trắc nghiệm các chủ đề môn Toán lớp 8, giúp học sinh bồi dưỡng năng lực và phát triển tư duy học môn Toán 8. Đại số 8 – Chương I. Phép nhân và phép chia các đa thức. Đại số 8 – Chương II. Phân thức đại số. Đại số 8 – Chương III. Phương trình bậc nhất một ẩn. Đại số 8 – Chương IV. Bất phương trình bậc nhất một ẩn. Hình học 8 – Chương I. Tứ giác. Hình học 8 – Chương II. Đa giác. Diện tích đa giác. Hình học 8 – Chương III. Tam giác đồng dạng. Hình học 8 – Chương IV. Hình lăng trụ đứng. Hình chóp đều.
Các chuyên đề học tập môn Toán 8 phần Hình học
Tài liệu gồm 886 trang, trình bày lý thuyết trọng tâm và phương pháp giải các dạng bài tập môn Toán 8 phần Hình học. Các trường hợp đồng dạng của tam giác vuông. Các trường hợp đồng dạng của tam giác. Diện tích các hình. Định lý Talet đảo và hệ quả Talet. Định lý Talet. Đường trung bình của hình thang. Đường trung bình của tam giác. Hình bình hành. Hình chữ nhật. Hình thang cân. Hình thang. Hình thoi. Hình vuông. Khái niệm hai tam giác đồng dạng. Tính chất đường phân giác của tam giác. Tứ giác.