Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG cấp huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Lương Tài Bắc Ninh

Nội dung Đề thi HSG cấp huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Lương Tài Bắc Ninh Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Lương Tài – Bắc Ninh Đề thi HSG cấp huyện Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Lương Tài – Bắc Ninh Đề thi HSG cấp huyện Toán lớp 7 năm 2020 – 2021 do phòng Giáo dục và Đào tạo Lương Tài tổ chức gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 120 phút, kỳ thi sẽ diễn ra vào ngày 13 tháng 04 năm 2021. Đề thi này được thiết kế nhằm đánh giá năng lực và kiến thức của học sinh lớp 7 trong môn Toán. Với bốn dạng bài toán khác nhau, kỳ thi đề cao khả năng tư duy, logic và khéo léo trong giải quyết vấn đề. Học sinh sẽ được đánh giá dựa trên khả năng áp dụng kiến thức học tập vào thực tế và khả năng giải quyết vấn đề theo cách sáng tạo. Tham gia kỳ thi HSG cấp huyện Toán là một cơ hội để học sinh thể hiện khả năng của mình, học hỏi thêm kinh nghiệm từ việc giải quyết các bài toán phức tạp. Kỳ thi không chỉ là cơ hội để học sinh thách thức bản thân mình mà còn là dịp để họ trau dồi kiến thức và kỹ năng trong môn Toán. Chúng ta hy vọng rằng kỳ thi sẽ mang lại những trải nghiệm tích cực và ý nghĩa cho học sinh, giúp họ phát triển không chỉ về kiến thức mà còn về tư duy và kỹ năng giải quyết vấn đề.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 7 năm 2021 - 2022 phòng GDĐT Hương Trà - TT Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp thị xã môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo Hương Trà, tỉnh Thừa Thiên Huế. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2021 – 2022 phòng GD&ĐT Hương Trà – TT Huế : + Tìm độ dài ba cạnh của tam giác có chu vi bằng 13cm. Biết độ dài ba đường cao tương ứng lần lượt là 2cm, 3cm, 4cm. + Cho tam giác ABC có góc B và góc C nhỏ hơn 90°, kẻ đường cao AH (H thuộc BC). Vẽ ra phía ngoài tam giác ấy các tam giác vuông cân ABD và ACE (trong đó góc ABD và góc ACE đều bằng 90°), vẽ DI và EK cùng vuông góc với đường thẳng BC. Chứng minh rằng: a) BI = CK; EK = HC. b) BC = DI + EK. + Tìm giá trị lớn nhất của biểu thức: P. Khi đó x nhận giá trị nguyên nào?
Đề thi Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Đức Thọ - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Đức Thọ, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 08 tháng 04 năm 2022. Trích dẫn đề thi Olympic Toán 7 năm 2021 – 2022 phòng GD&ĐT Đức Thọ – Hà Tĩnh : + Biết trung bình cộng của 16 số bằng 4. Thêm vào số thứ mười bảy thì trung bình cộng của chúng bằng 5. Tìm số thứ mười bảy? + Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5 m/s trên cạnh thứ ba với vận tốc 4 m/s, trên cạnh thứ tư với vận tốc 3 m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên 4 cạnh là 59 giây. + Cho tam giác ABC vuông cân tại A; M là trung điểm của cạnh BC. Lấy điểm D bất kỳ thuộc đoạn thẳng BM. Kẻ BH vuông góc với AD (H thuộc AD), CI vuông góc với AD (I thuộc AD). Đường thẳng AM cắt CI tại N. Chứng minh rằng: a) DN vuông góc với AC. b) ΔΑΗΒ = ΔCIA. c) IM là tia phân giác của góc CID.
Đề thi Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An.
Đề thi HSG cấp trường Toán 7 năm 2020 - 2021 trường THCS Cẩm Bình - Hà Tĩnh
Đề thi HSG cấp trường Toán 7 năm 2020 – 2021 trường THCS Cẩm Bình – Hà Tĩnh gồm 10 câu dạng ghi kết quả và 01 câu tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG cấp trường Toán 7 năm 2020 – 2021 trường THCS Cẩm Bình – Hà Tĩnh : + Tam giác ABC có các tia phân giác của góc B và góc C cắt nhau tại O. Tính số đo của góc A biết BOC = 120°. + Tìm số có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với ba số 1, 2 và 3. + Cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD. a) Chứng minh ABE = ADC. b) Tính số đo góc BIC.