Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương pháp tọa độ trong mặt phẳng Toán 10 Chân Trời Sáng Tạo

Tài liệu gồm 347 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong mặt phẳng trong chương trình SGK Toán 10 Chân Trời Sáng Tạo (CTST), có đáp án và lời giải chi tiết. BÀI 1 . TỌA ĐỘ CỦA VECTƠ. Dạng 1. Tìm tọa độ điểm, tọa độ vectơ trên mặt phẳng Oxy. Dạng 2. Xác định tọa độ điểm, vectơ liên quan đến biểu thức dạng u + v, u – v, ku. Dạng 3. Xác định tọa độ các điểm của một hình. Dạng 4. Bài toán liên quan đến sự cùng phương của hai vectơ. Phân tích một vectơ qua hai vectơ không cùng phương. BÀI 2 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. BÀI TẬP TỰ LUẬN: Dạng 1. Xác định VTCP, VTPT của đường thẳng. Dạng 2. Viết phương trình đường thẳng thỏa mãn một số tính chất cho trước. Dạng 3. Xét vị trí tương đối của hai đường thẳng. Dạng 4. Tính góc, khoảng cách. BÀI TẬP TRẮC NGHIỆM: Dạng 1. Xác định véctơ chỉ phương, véc tơ pháp tuyến của đường thẳng, hệ số góc của đường thẳng. Dạng 2. Viết phương trình đường thẳng và các bài toán liên quan. + Dạng 2.1 Viết phương trình đường thẳng khi biết VTPT hoặc VTCP, hệ số góc và một điểm đi qua. + Dạng 2.2 Viết phương trình đường thẳng đi qua một điểm vuông góc hoặc với đường thẳng cho trước. + Dạng 2.3 Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác. Dạng 3. Vị trí tương đối của hai đường thẳng. Dạng 4. Góc của hai đường thẳng. + Dạng 4.1 Tính góc của hai đường thẳng cho trước. + Dạng 4.2 Viết phương trình đường thẳng liên quan đến góc. Dạng 5. Khoảng cách. + Dạng 5.1 Tính khoảng cách từ một điểm đến đường thẳng cho trước. + Dạng 5.2 Phương trình đường thẳng liên quan đến khoảng cách. Dạng 6. Xác định điểm. + Dạng 6.1 Xác định tọa hình chiếu, điểm đối xứng. + Dạng 6.2 Xác định điểm liên quan đến yếu tố khoảng cách, góc. BÀI 3 . ĐƯỜNG TRÒN TRONG MẶT PHẲNG TỌA ĐỘ. BÀI TẬP TỰ LUẬN: Dạng 1. Nhận dạng phương trình đường tròn. Tìm tâm và bán kính đường tròn. Dạng 2. Viết phương trình đường tròn. Dạng 3. Vị trí tương đối của điểm; đường thẳng; đường tròn với đường tròn. Dạng 4. Viết phương trình tiếp tuyến với đường tròn. BÀI TẬP TRẮC NGHIỆM: Dạng 1. Nhận dạng phương trình đường tròn. Dạng 2. Tìm tọa độ tâm, bán kính đường tròn. Dạng 3. Viết phương trình đường tròn. + Dạng 3.1 Khi biết tâm và bán kính. + Dạng 3.2 Khi biết các điểm đi qua. + Dạng 3.3 Sử dụng điều kiện tiếp xúc. Dạng 4. Tương giao của đường thẳng và đường tròn. + Dạng 4.1 Phương trình tiếp tuyến. + Dạng 4.2 Bài toán tương giao. Dạng 5. Câu hỏi min – max. BÀI 4 . BA ĐƯỜNG CONIC TRONG MẶT PHẲNG TỌA ĐỘ. Dạng 1. Xác định các yếu tố của elip. Dạng 2. Viết phương trình chính tắc của elip. Dạng 3. Tìm điểm thuộc elip thỏa điều kiện cho trước.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương pháp tọa độ trong mặt phẳng - Nguyễn Bá Hoàng
Phương pháp tọa độ trong mặt phẳng là một phần kiến thức quan trọng thường xuyên là câu hỏi dùng để phân loại học sinh khá, giỏi trong đề thi. Đây là một chủ đề đã có rất nhiều bài viết, tuy nhiên tác giả vẫn quyết định viết chủ đề này như một món quà tặng cho các em học sinh lớp 10. Các bài trong tài liệu được phân bài theo chương trình trong sách giáo khoa hiện hành rất thuận tiện cho bạn đọc và đặc biệt là các em học sinh đang học phần này tham khảo. Trong tài liệu tác giả có đưa ra các ví dụ minh họa ở các mức độ khác nhau kèm với đó là các bài tập đề nghị có hướng dẫn giải một số bài tập khó; đồng thời tác giả đưa ra 50 bài tập trắc nghiệm không đáp án để bạn đọc làm quen với các bài tập trắc nghiệm. [ads]
Chuyên đề phương pháp tọa độ trong mặt phẳng - Trần Văn Tài
Tài liệu gồm 121 trang tóm tắt lý thuyết và tuyển chọn các bài tập trắc nghiệm phương trình đường thẳng và phương trình đường tròn trong chuyên đề phương pháp tọa độ trong mặt phẳng (Hình học 10 chương 3), tài liệu được biên soạn bởi thầy Trần Văn Tài, các bài tập có đáp án và lời giải chi tiết. Nội dung tài liệu : A – PHƯƠNG TRÌNH ĐƯỜNG THẲNG Vấn đề 1. Lập phương trình của đường thẳng Vấn đề 2. Các bài toán dựng tam giác, sự tương giao, khoảng cách và góc 1. Các bài toán dựng tam giác Đó là các bài toán xác định toạ độ các đỉnh hoặc phương trình các cạnh của một tam giác khi biết một số yếu tố của tam giác đó. Để giải loại bài toán này ta thường sử dụng đến các cách dựng tam giác. Ta thường gặp một số loại cơ bản sau đây: + Loại 1. Dựng ΔABC, khi biết các đường thẳng chứa cạnh BC và hai đường cao BB’, CC’ + Loại 2. Dựng ΔABC, khi biết đỉnh A và hai đường thẳng chứa hai đường cao BB’, CC’ + Loại 3. Dựng ΔABC, khi biết đỉnh A, 2 đường thẳng chứa 2 đường trung tuyến BM, CN. + Loại 4. Dựng ΔABC, khi biết hai đường thẳng chứa hai cạnh AB, AC và trung điểm M của cạnh BC 2. Vị trí tương đối – khoảng cách – góc [ads] Vấn đề 3. Một số bài toán cơ bản trong tam giác + Dạng 1. Tìm điểm M’ đối xứng với điểm M qua đường thẳng d . Ax + By + C = 0 + Dạng 2. Lập phương trình đường thẳng d’ đối xứng với đường thẳng d qua đường thẳng Δ + Dạng 3. Lập phương trình đường thẳng d’ đối xứng với đường thẳng d qua điểm I + Dạng 4. Lập phương trình các đường phân giác của các góc tạo bởi hai đường thẳng B – PHƯƠNG TRÌNH ĐƯỜNG TRÒN + Nhóm 1. Xác định tâm và bán kính đường tròn + Nhóm 2. Lập phương trình đường tròn + Nhóm 3. Tập hợp điểm (quỹ tích tâm đường tròn) + Nhóm 4. Vị trí tương đối của đường thẳng và đường tròn + Nhóm 5. Vị trí tương đối của hai đường tròn + Nhóm 6. Tiếp tuyến của đường tròn + Nhóm 7. Xét vị trí tương đối của đường thẳng và đường tròn để giải hệ phương trình – hệ bất phương trình
Chuyên đề phương pháp tọa độ trong mặt phẳng - Nguyễn Bảo Vương
Tài liệu gồm 165 trang với lý thuyết, phân dạng và bài tập trắc nghiệm các dạng toán phương pháp tọa độ trong mặt phẳng tài liệu do thầy Nguyễn Bảo Vương biên soạn. + Phần 1. Phương trình tổng quát của đường thẳng + Phần 2. Phương trình tham số của đường thẳng + Phần 3. Khoảng cách và góc + Phần 4. Đường tròn [ads] + Phần 5. Đường elip + Phần 6. Đường hypebol + Phần 7. Đường parabol + Phần 8. Ba đường cônic + Phần 9. Bài tập tổng hợp phương pháp tọa độ trong mặt phẳng
Phương pháp trắc nghiệm hình học giải tích mặt phẳng và không gian - Mộng Hy, Thế Cấp
Cuốn sách gồm 247 trang gồm lý thuyết, phương pháp giải toán và các bài tập trắc nghiệm có lời giải chi tiết chủ đề hình học giải tích. Cuốn sách gồm 10 chuyên đề được chia làm 2 phần: phần 1 là phần hình học giải tích trong mặt phẳng do TS. Đậu Thế Cấp biên soạn, phần 2 là phần hình học giải tích trong không gian do PGS.TS Nguyễn Mộng Hy biên soạn. Cuối cùng có phần trắc nghiệm giúp người đọc hoàn thiện hơn kiến thức của mình. Phần 1. Hình học giải tích trong mặt phẳng Chuyên đề 1. Vectơ và tọa độ trong mặt phẳng Chuyên đề 2. Đường thẳng trong mặt phẳng Chuyên đề 3. Đường tròn Chuyên đề 4. Elip Chuyên đề 5. Hypebol Chuyên đề 6. Parabol [ads] Phần 2. Hình học giải tích trong không gian Chuyên đề 7. Vectơ tọa độ trong không gian Chuyên đề 8. Mặt phẳng Chuyên đề 9. Đường thẳng trong không gian Chuyên đề 10. Mặt cầu