Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường chuyên Hạ Long Quảng Ninh

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường chuyên Hạ Long Quảng Ninh Bản PDF Ngày … tháng 12 năm 2019, trường THPT chuyên Hạ Long, tỉnh Quảng Ninh tổ chức kì thi kiểm tra chất lượng môn Toán khối 11 giai đoạn cuối học kì 1 năm học 2019 – 2020. Đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT chuyên Hạ Long – Quảng Ninh có mã đề 101, đề gồm 05 trang, có 45 câu trắc nghiệm dành cho cho tất cả các thí sinh, 05 câu dành cho học sinh các lớp không phải chuyên Toán và 05 câu cho các thí sinh các lớp chuyên Toán, thời gian học sinh làm bài là 90 phút. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường chuyên Hạ Long – Quảng Ninh : + Mệnh đề nào sau đây sai? A. Phép tịnh tiến bảo toàn khoảng cách giữa hai điểm bất kì. B. Phép tịnh tiến biến đường thẳng thành đường thẳng song song với đường thẳng đã cho. C. Phép tịnh tiến biến ba điểm thẳng hàng thành ba điểm thẳng hàng. D. Phép tịnh tiến biến tam giác thành tam giác bằng tam giác đã cho. + Một hình (H) có tâm đối xứng nếu và chỉ nếu: A. Tồn tại phép đối xứng tâm biến hình (H) thành chính nó. B. Tồn tại phép đối xứng trục biến hình (H) thành chính nó. C. Hình (H) là hình bình hành. D. Tồn tại phép dời hình biến hình (H) thành chính nó. [ads] + Cho hình chóp S.ABCD có đáy là hình thang ABCD với AB // CD. Khẳng định nào sau đây sai? A. Hình chóp S.ABCD có bốn mặt bên. B. Giao tuyến của hai mặt phẳng (SAC) và (SBD) là SO (O là giao điểm của AC và BD). C. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là SI (với I là giao điểm của AD và BC). D. Giao tuyến của hai mặt phẳng (SAB) và (SAD) là đường trung bình của ABCD. + Cho tứ diện ABCD. Gọi O là một điểm bên trong tam giác BCD và M là một điểm trên đoạn AO. Gọi I, J là hai điểm trên cạnh BC, BD. Giả sử IJ cắt CD tại K, BO cắt IJ tại E và BO cắt CD tại H, ME cắt AH tại F. Giao tuyến của hai mặt phẳng (MIJ) và (ACD) là đường thẳng? + Trong một lớp có 20 học sinh nữ và 15 học sinh nam. Giáo viên chủ nhiệm cần chọn hai học sinh trong đó có một nam và một nữ đi dự Đại hội Đoàn trường THPT chuyên Hạ Long (Quảng Ninh). Hỏi giáo viên có bao nhiêu cách chọn?

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT Thạch Thành 1 - Thanh Hóa
Đề thi học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT Thạch Thành 1 – Thanh Hóa gồm 4 bài toán tự luận và 20 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 11 : + Cho tứ diện đều ABCD cạnh 2a. Gọi M , N lần lượt là trung điểm các cạnh AC, BC; P là trọng tâm tam giác BCD. a) Xác định giao tuyến của mặt phẳng (MNP) với mặt phẳng (BCD) b) Tính diện tích thiết diện của tứ diện cắt bởi mặt phẳng (MNP) + Xét trên tập xác định thì: A. hàm số lượng giác có tập giá trị là [-1; 1] B. hàm số y = cosx có tập giá trị là [-1; 1] C. hàm số y = tanx có tập giá trị là [-1; 1] D. hàm số y = cotx có tập giá trị là [-1; 1] [ads] + Khẳng định nào sau đây là đúng về phép tịnh tiến? A. Phép tịnh tiến theo véctơ v biến điểm M thành điểm M’ thì véctơ v = MM’ B. Phép tịnh tiến là phép đồng nhất nếu véctơ tịnh tiến v = 0 C. Nếu phép tịnh tiến theo véctơ v biến 2 điểm M, N thành hai điểm M’, N’ thì MNN’M’ là hình bình hành D. Phép tịnh tiến biến một đường tròn thành một elip
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Nguyễn Trãi - Hà Nội
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Nguyễn Trãi – Hà Nội gồm 25 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 11 : + Trong một giải cầu lông có 6 vận động viên tham dự nội dung đơn nam, số cách trao một bộ huy chương gồm 1huy chương vàng, 1 huy chương bạc và 1 huy chương đồng là? A. 120   B. 360 C .240   D. Kết quả khác + Cho hai đường thẳng (d): x – y + 1 = 0 và (d’): x – y – 5 = 0. Có bao nhiêu điểm I thoả mãn điều kiện phép đối xứng tâm I biến (d) thành (d’). [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD 1) Chứng minh rằng: Đường thẳng MN song song với mặt phẳng (SCD). 2) Tìm giao tuyến của mp(MNP) và mp(ABCD). 3) Tìm giao điểm G của đường thẳng SC và mp(MNP). Tính tỷ số SC/SG. Bạn đọc có thể tham khảo thêm các đề thi HK1 Toán 11 của các trường THPT và sở GD&ĐT trên toàn quốc tại đây.
Đề thi học kỳ I Toán 11 năm học 2017 - 2018 trường THPT Yên Mỹ - Hưng Yên
Đề thi học kỳ I Toán 11 năm học 2017 – 2018 trường THPT Yên Mỹ – Hưng Yên mã đề 162 gồm 30 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi học kỳ I Toán 11 : + Phép tịnh tiến T theo vectơ u khác 0, biến đường thẳng d thành đường thẳng d’. Nếu d’ trùng với d thì giá của vectơ u: A. không song song với d. B. trùng với d. C. song song với d. D. song song hoặc trùng với d. + Cho hình chóp S.ABCD đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, CD. a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b) Chứng minh MN song song với (SBC). [ads] + Với mọi x thuộc khoảng (0; π/2), so sánh cos(sinx) với cos1 thì: A. không so sánh được. B. cos(sinx) < cos1. C. cos(sinx) > cos1. D. cos(sinx) ≥ cos1.
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Phước Thạnh - Tiền Giang
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Phước Thạnh – Tiền Giang gồm 28 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi diễn ra ngày 18/12/2017, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 11 : + Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AD. Khi đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là: A. Đường thẳng SO với O là giao điểm của AC và BD. B. Đường thẳng đi qua S và song song AC. C. Đường thẳng đi qua S và song song BD. D. Đường thẳng SI với I là giao điểm của AB và CD. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SC. 1. Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). 2. Chứng minh OM // (SAB). [ads] + Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của AD, AB, CD. Khi đó giao điểm của BC với mặt phẳng (MNP) chính là: A. Trung điểm của AC. B. Trung điểm của BC. C. Giao điểm của MP và BC. D. Giao điểm của MN và CD.