Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 8 môn Toán năm 2020 2021 trường THCS Yên Hòa Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 8 môn Toán năm 2020 2021 trường THCS Yên Hòa Hà Nội Bản PDF - Nội dung bài viết Đề thi học kì 1 Toán lớp 8 năm 2020 - 2021 trường THCS Yên Hòa Hà Nội Đề thi học kì 1 Toán lớp 8 năm 2020 - 2021 trường THCS Yên Hòa Hà Nội Chào mừng đến với đề thi học kì 1 Toán lớp 8 năm 2020 - 2021 của trường THCS Yên Hòa Hà Nội. Đề thi này được biên soạn nhằm giúp các em học sinh lớp 8 ôn tập và thử sức để chuẩn bị cho kì thi học kì 1 sắp tới. **Phần 1:** - Cho tam giác ABC nhọn, AB = AC. Gọi M, N lần lượt là trung điểm của AB, AC. Nếu BC = 8cm, hãy tính độ dài MN. Sau đó, lấy điểm D đối xứng với B qua N. Chứng minh tứ giác ABCD là hình bình hành. Kế tiếp, kẻ đường thẳng AP và BC, CQ và AD. Chứng minh rằng ba điểm P, N, Q thẳng hàng. Cuối cùng, tam giác ABC cần thêm điều kiện gì để tứ giác ABCD là hình vuông? **Phần 2:** - Cho a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng a^3 + b^3 + c^3 = 3abc. Tiếp theo, phân tích các đa thức a^3 - b^3, a^3 + b^3 thành nhân tử. Hy vọng đề thi này sẽ giúp các em học sinh lớp 8 tự tin hơn khi tham gia kì thi học kì 1. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 8 năm 2017 - 2018 phòng GDĐT Vĩnh Yên - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 8 năm 2017 – 2018 phòng GD&ĐT Vĩnh Yên – Vĩnh Phúc gồm 06 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án + lời giải chi tiết.
Đề kiểm tra học kỳ 1 Toán 8 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 8 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề kiểm tra học kỳ 1 Toán 8 : Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm M bất kì. Gọi D, E lần lượt là chân đường vuông góc kẻ từ M xuống các cạnh AB và AC. a) Tứ giác ADME là hình gì? vì sao? b) Điểm M ở vị trí nào trên cạnh BC để tứ giác ADME là hình vuông? c) Gọi I là trung điểm đoạn thẳng BM và K là trung điểm đoạn thẳng CM và tứ giác DEKI là hình bình hành. Chứng minh rằng DE là đường trung bình tam giác ABC. Giải: a) Xét tứ giác ADME có: Góc DAE = 90 độ (vì tam giác ABC vuông tại A) Góc ADM = 90 độ (Vì MD ⊥ AB tại D) Góc AEM = 90 độ (Vì ME ⊥ AC tại E) Suy ra tứ giác ADME là hình chữ nhật. b) Để tứ giác ADME là hình vuông thì hình chữ nhật ADME có AM là tia phân giác của góc DAE, suy ra điểm M là giao điểm của đường phân giác góc BAC với cạnh BC của tam giác ABC. [ads] c) Theo giả thiết tứ giác DEKI là hình bình hành nên DI = EK, mà DI = 1/2.BM, EK = 1/2.CM (tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông, áp dụng vào tam giác BDM vuông tại D, tam giác CEM vuông tại E) Do đó: BM = CM ⇒ M là trung điểm của BC (1) Lại có MD ⊥ AB và AC ⊥ AB nên MD // AC (2) Từ (1) và (2) suy ra D là trung điểm cạnh AB (*) Chứng minh tương tự ta có E là trung điểm cạnh AC (**) Từ (*) và (**) suy ra DE là đường trung bình tam giác ABC. (đpcm)
Đề khảo sát chất lượng học kỳ 1 Toán 8 năm học 2017 - 2018 phòng GD và ĐT Bảo Thắng - Lào Cai
Đề khảo sát chất lượng học kỳ 1 Toán 8 năm học 2017 – 2018 phòng GD và ĐT Bảo Thắng – Lào Cai gồm 7 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 8 : + Một mảnh vườn lúc đầu có dạng tam giác ABC vuông tại A, bờ rào AB dài 5m, rào AC dài 12m. Người ta sử dụng lưới ngăn dọc theo hai điểm E; M. (E là trung điểm của AC và M là trung điểm của BC) để chia mảnh vườn thành hai phần trồng rau và hoa. a) Tính độ dài của lưới ME phải dùng b) Mảnh vườn AEMB là hình gì? Vì sao? c) Tính diện tích phần vườn ECM? [ads] + Hình bình hành là: A. Tứ giác có hai cạnh đối bằng nhau B. Tứ giác có các cặp cạch đối bằng nhau C. Tứ giác có các cặp cạnh đối song song D. Hình thang có hai đường chéo bằng nhau + Hình nào sau đây không có tâm đối xứng? A. Hình bình hành B. Hình thang cân C. Hình chữ nhật D.Cả ba hình trên