Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học chuyên đề hàm số lũy thừa - mũ - logarit - Lê Minh Cường

Nhằm tạo nguồn tài liệu dồi dào, phong phú và thích hợp với xu hướng tự học của học sinh. Thầy Lê Minh Cường cùng một số thầy (cô) khác đã dày công biên soạn và sưu tầm các dạng toán trắc nghiệm lớp 12 và cho ra đời tập “TÀI LIỆU TỰ HỌC – TOÁN 12, Vol.1” để đáp ứng nhu cầu học sinh cũng như làm thỏa mãn tính tự học ở những bạn đã sớm ý thức được kỹ năng cần thiết này. Tài liệu gồm 55 trang tóm tắt lý thuyết, công thức, các ví dụ có lời giải và các bài toán trắc nghiệm có đáp án chuyên đề hàm số lũy thừa – mũ – logarit (Chương 2 Giải tích 12). Nội dung gồm các phần: Công thức lũy thừa – mũ – logarit  1. Rút gọn biểu thức lũy thừa 2. So sánh 3. Biến đổi biểu thức Logarit 4. Phân tích biểu thức Logarit 4.1. Biểu diễn theo 1 biến 4.2. Biểu diễn theo 2 biến 5. Tính biểu thức logarit Hàm số lũy thừa – Mũ – Logarit  1. Tìm tập xác định 1.1. Hàm lũy thừa 1.2. Hàm logarit 2. Tìm đạo hàm 2.1. Hàm mũ và lũy thừa 2.2. Hàm logarit [ads] 3. Tìm tập xác định và tính đạo hàm các hàm phức tạp 4 Tính chất hàm số 4.1. Tính đơn điệu của hàm chứa mũ – logarit 4.2. Cực trị, giới hạn, tiệm cận của hàm chứa mũ – logarit 4.3. Tính chất đồ thị hàm chứa mũ – logarit 4.4. Giá trị lớn nhất và nhỏ nhất của hàm số chứa mũ – logarit 4.5. Hàm mũ – logarit có tham số PT – BPT mũ và logarit  1. Phương trình mũ 1.1. Phương trình cơ bản 1.2. Đặt ẩn phụ 1.3. Phương pháp khác 1.4. Phương trình chứa tham số 1.5. Sử dụng tính đơn điện của hàm số 2. Phương trình logarit 2.1. Phương trình cơ bản 2.2. Phương pháp đặt ẩn phụ 2.3. Phương trình logarit chứa tham số 3. Bài tập nâng cao về phương trình 4. Bất phương trình mũ 4.1. Bất phương trình cơ bản 4.2. Các phương pháp khác 5. Bất phương trình logarit 5.1. Cơ bản 5.2. Bất phương trình tổng hợp Bài toán thực tế

Nguồn: toanmath.com

Đọc Sách

Phương pháp giải bài toán lãi suất ngân hàng - Mẫn Ngọc Quang
Tài liệu gồm 18 trang hướng dẫn phương pháp giải bài toán lãi suất ngân hàng và các bài tập trắc nghiệm có lời giải chi tiết. Công thức 1: (Dành cho gửi tiền một lần) Gửi vào ngân hàng số tiền là a đồng, với lãi suất hàng tháng là r% trong n tháng. Tính cả vốn lẫn lãi T sau n tháng ? Công thức 2: (Dành cho gửi tiền hàng tháng) Một người, hàng tháng gửi vào ngân hàng số tiền là a (đồng). Biết lãi suất hàng tháng là r%. Hỏi sau n tháng, người ấy có bao nhiêu tiền ? Công thức 3: Dành cho bài toán trả góp: Gọi số tiền vay là N, lãi suất là x, n là số tháng phải trả, A là số tiền phải trả vào hàng tháng để sau n tháng là hết nợ. Công thức 4: Rút sổ tiết kiệm theo định kỳ: Thực ra bài toán này giống bài 3, nhưng mình lại hiểu là ngân hàng nợ tiền của người cho vay. Trái lại so với vay trả góp. Công thức 5: Gửi tiền theo kỳ hạn 3 tháng, 6 tháng, 1 năm … [ads]
Một số bài toán cơ bản về tính lãi suất ngân hàng - Hoàng Tiến Trung
Tài liệu gồm 8 trang trình bày công thức giải các bài toán lãi suất ngân hàng kèm theo các ví dụ mẫu có lời giải chi tiết. + Lãi đơn: Lãi được tính theo tỉ lệ phần trăm trong một khoảng thời gian cố định trước. Ví dụ : Khi ta gửi tiết kiệm 50 (triệu đồng) vào một ngân hàng với lãi suất 6,9% /năm thì sau một năm ta nhận được số tiền lãi là: 50 * 6,9% = 3,45 (triệu đồng) – Số tiền lãi này như nhau được cộng vào hàng năm. Kiểu tính lãi này được gọi là lãi đơn. – Sau hai năm số tiền cả gốc lẫn lãi là: 50 + 2 * 3,45 = 56,9 (triệu đồng) – Sau n năm số tiền cả gốc lẫn lãi là: 50 + n * 3,45 (triệu đồng) [ads] + Lãi kép: Sau một đơn vị thời gian (kỳ hạn), tiền lãi được gộp vào vốn và được tính lãi. Loại lãi này được gọi là lãi kép. Ví dụ: Khi gửi tiết kiệm 50 (triệu đồng) vào một ngân hàng với lãi suất 6,9%/năm thì sau một năm, ta nhận được số tiền cả gốc lẫn lãi là : 50 + 3,45 =  53,45 (triệu đồng) – Toàn bộ số tiền này được gọi là gốc. – Tổng số tiền cuối năm thứ hai là: 53,45 + 53,45 * 6,9% = 53,45 * (1 + 6,9%) (triệu đồng)
Phương pháp nâng lũy thừa trong bài toán phương trình hàm số Logarit - Nguyễn Đình Hoàn
Tài liệu gồm 25 trang giới thiệu phương pháp nâng lũy thừa trong bài toán phương trình hàm số Logarit do tác giả Nguyễn Đình Hoàn biên soạn. Tài liệu gồm 5 ví dụ và 12 bài toán áp dụng có lời giải chi tiết. Cách 1: Nâng lũy thừa không hoàn toàn Cách 2: Nâng lũy thừa hoàn toàn Cách 3: Nâng lũy thừa hoàn toàn kết hợp với ẩn phụ Các ví dụ mẫu được giải chi tiết kèm theo phần bình luận, rút kinh nghiệm sau mỗi bài toán giúp bạn đọc hiểu rõ và biết cách vận dụng hợp lý vào các bài toán khác. [ads]
Các phương pháp giải PT - BPT - HPT Mũ và Logarit - Nguyễn Trung Kiên
Tài liệu Các phương pháp giải phương trình – bất phương trình – hệ phương trình Mũ và Logarit của thầy Nguyễn Trung Kiên gồm 54 trang. Tài liệu tóm gọn các phương pháp giải và một số ví dụ mẫu của PT-BPT-HPT Mũ và Logarit.