Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa cuối học kì 1 (HK1) lớp 10 môn Toán năm 2023 2024 sở GD ĐT Quảng Ngãi

Nội dung Đề minh họa cuối học kì 1 (HK1) lớp 10 môn Toán năm 2023 2024 sở GD ĐT Quảng Ngãi Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề minh họa kiểm tra cuối học kì 1 môn Toán lớp 10 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận (theo điểm số), có ma trận, bảng đặc tả, đáp án và hướng dẫn chấm điểm. 1 TẬP HỢP. MỆNH ĐỀ Mệnh đề. – Nhận biết: + Phát biểu được các mệnh đề toán học, bao gồm: mệnh đề phủ định; mệnh đề đảo; mệnh đề tương đương; mệnh đề có chứa kí hiệu ∀, ∃; điều kiện cần, điều kiện đủ, điều kiện cần và đủ. – Thông hiểu: + Thiết lập được các mệnh đề toán học, bao gồm: mệnh đề phủ định; mệnh đề đảo; mệnh đề tương đương; mệnh đề có chứa kí hiệu ∀, ∃; điều kiện cần, điều kiện đủ, điều kiện cần và đủ. + Xác định được tính đúng/sai của một mệnh đề toán học trong những trường hợp đơn giản. Tập hợp và các phép toán trên tập hợp. – Nhận biết: + Nhận biết được các khái niệm cơ bản về tập hợp (tập con, hai tập hợp bằng nhau, tập rỗng) và biết sử dụng các kí hiệu. – Thông hiểu: + Thực hiện được phép toán trên các tập hợp (hợp, giao, hiệu của hai tập hợp, phần bù của một tập con) và biết dùng biểu đồ Ven để biểu diễn chúng trong những trường hợp cụ thể. – Vận dụng: + Giải quyết được một số vấn đề thực tiễn gắn với phép toán trên tập hợp (ví dụ: những bài toán liên quan đến đếm số phần tử của hợp các tập hợp). 2 BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN Bất phương trình bậc nhất hai ẩn. – Nhận biết: + Nhận biết được bất phương trình bậc nhất hai ẩn. + Nhận biết được nghiệm và miền nghiệm của bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Thông hiểu: + Mô tả được miền nghiệm của bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. Hệ bất phương trình bậc nhất hai ẩn. – Nhận biết: + Nhận biết được hệ bất phương trình bậc nhất hai ẩn. + Nhận biết được nghiệm và miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Thông hiểu: + Mô tả được miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Vận dụng: + Vận dụng được kiến thức về hệ bất phương trình bậc nhất hai ẩn vào giải quyết bài toán thực tiễn, bài toán tìm cực trị của biểu thức F = ax + by trên một miền đa giác. – Vận dụng cao: + Vận dụng được kiến thức về bất phương trình, hệ bất phương trình bậc nhất hai ẩn vào giải quyết một số bài toán thực tiễn (phức hợp, không quen thuộc). 3 HỆ THỨC LƯỢNG TRONG TAM GIÁC Giá trị lượng giác của một góc từ 0° đến 180°. – Nhận biết: + Nhận biết được giá trị lượng giác của một góc từ 0° đến 180°. + Nhận biết được hệ thức liên hệ giữa giá trị lượng giác của các góc phụ nhau, bù nhau, các hệ thức lượng giác cơ bản. – Thông hiểu: + Tính được giá trị lượng giác (đúng hoặc gần đúng) của một góc từ 0° đến 180° bằng máy tính cầm tay. Hệ thức lượng trong tam giác. – Nhận biết: + Nhận biết các hệ thức lượng cơ bản trong tam giác: định lí côsin, định lí sin, công thức tính diện tích tam giác. – Thông hiểu: + Sử dụng được các hệ thức lượng cơ bản trong tam giác: định lí côsin, định lí sin và công thức tính diện tích tam giác để tính các cạnh, các góc chưa biết và diện tích tam giác, độ dài đường cao, đường trung tuyến, bán kính đường tròn nội, ngoại tiếp tam giác. – Vận dụng: + Mô tả được cách giải tam giác và vận dụng được vào việc giải một số bài toán có nội dung thực tiễn (ví dụ: xác định khoảng cách giữa hai địa điểm khi gặp vật cản, xác định chiều cao của vật khi không thể đo trực tiếp) hoặc các bài toán khác về hệ thức lượng trong tam giác. 4 VECTƠ Các khái niệm mở đầu. – Nhận biết: + Nhận biết được khái niệm vectơ, hai vectơ cùng phương, hai vectơ cùng hướng, hai vectơ bằng nhau, vectơ-không. – Thông hiểu: + Mô tả được một số đại lượng trong thực tiễn bằng vectơ. + Tính được độ dài vectơ. Tổng và hiệu của hai vectơ. – Nhận biết: + Nhận biết được quy tắc ba điểm, quy tắc hình bình hành, quy tắc về hiệu vectơ, quy tắc trung điểm và trọng tâm tam giác. – Thông hiểu: + Thực hiện được các phép toán tổng và hiệu hai vectơ. + Mô tả được một số đại lượng trong thực tiễn bằng vectơ. – Vận dụng: + Vận dụng vectơ trong các bài toán tổng hợp lực, tổng hợp vận tốc. Tích của một vectơ với một số. – Nhận biết: + Nhận biết định nghĩa tích của vectơ với một số, các tính chất. + Biết được điều kiện để hai vectơ cùng phương, tính chất trung điểm, tính chất trọng tâm. – Thông hiểu: + Thực hiện được phép nhân vectơ với một số. + Mô tả các mối quan hệ cùng phương, cùng hướng bằng vectơ. Vectơ trong mặt phẳng tọa độ. – Nhận biết: + Nhận biết được vectơ theo hai vectơ đơn vị, tìm được tọa độ vectơ khi biết tọa độ hai điểm, tìm độ dài vectơ khi biết tọa độ. – Thông hiểu: + Tính được tọa độ điểm, vectơ thỏa mãn đẳng thức, tọa độ của vectơ tổng, tọa độ trung điểm, trọng tâm, tọa độ đỉnh hình bình hành, vectơ cùng phương, độ dài vectơ. – Vận dụng: + Vận dụng kiến thức tọa độ của điểm, của vectơ để giải các bài toán tìm tọa độ của điểm, của vectơ hoặc các bài toán khác có vận dụng thực tiễn. Tích vô hướng của hai vectơ. – Nhận biết: + Nhận biết được tích vô hướng hai vectơ, biểu thức tọa độ tích vô hướng, góc giữa hai vectơ. – Thông hiểu: + Tính được tích vô hướng hai vectơ, góc giữa hai vectơ, biểu thức tọa độ tích vô hướng, tìm tọa độ điểm, vectơ liên quan đến độ dài vectơ, tích vô hướng. – Vận dụng: + Sử dụng được vectơ và các phép toán trên vectơ để giải thích một số hiện tượng có liên quan đến Vật lí và Hoá học (ví dụ: những vấn đề liên quan đến lực, đến chuyển động). + Vận dụng được kiến thức về vectơ để giải một số bài toán hình học và một số bài toán liên quan đến thực tiễn (ví dụ: xác định lực tác dụng lên vật). 5 CÁC SỐ ĐẶC TRƯNG CỦA MẪU SỐ LIỆU KHÔNG GHÉP NHÓM Số gần đúng, sai số. – Nhận biết: + Hiểu được khái niệm số gần đúng, sai số tuyệt đối. – Thông hiểu: + Xác định được số gần đúng của một số với độ chính xác cho trước. + Xác định được sai số tương đối của số gần đúng. – Vận dụng: + Xác định được số quy tròn của số gần đúng với độ chính xác cho trước. + Biết sử dụng máy tính cầm tay để tính toán với các số gần đúng. Các số đặc trưng đo xu thế trung tâm. – Nhận biết: + Nắm các khái niệm về số trung bình, số trung vị, tứ phân vị, mốt và ý nghĩa. – Thông hiểu: + Biết tìm số trung bình và mốt dựa vào bảng số liệu. – Vận dụng: + Tính được số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm: số trung bình cộng (hay số trung bình), trung vị (median), tứ phân vị (quartiles), mốt (mode). – Vận dụng cao: + Giải thích được ý nghĩa và vai trò của các số đặc trưng nói trên của mẫu số liệu trong thực tiễn. + Chỉ ra được những kết luận nhờ ý nghĩa của số đặc trưng nói trên của mẫu số liệu trong trường hợp đơn giản. Các số đặc trưng đo mức độ phân tán. – Nhận biết: + Nhận biết được mối liên hệ giữa thống kê với những kiến thức của các môn học trong Chương trình lớp 10 và trong thực tiễn. – Thông hiểu: + Giải thích được ý nghĩa và vai trò của các số đặc trưng nói trên của mẫu số liệu trong thực tiễn. – Vận dụng: + Tính được số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm: khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn. – Vận dụng cao: + Chỉ ra được những kết luận nhờ ý nghĩa của số đặc trưng nói trên của mẫu số liệu trong trường hợp đơn giản. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề minh họa học kì 1 Toán 10 năm 2021 - 2022 trường THPT Marie Curie - TP HCM
Đề minh họa kiểm tra học kì 1 môn Toán khối 10 năm học 2021 – 2022 trường THPT Marie Curie, quận 3, thành phố Hồ Chí Minh gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn đề minh họa học kì 1 Toán 10 năm 2021 – 2022 trường THPT Marie Curie – TP HCM : + Cho hàm số 2 f x ax bx a 1 0 có đồ thị là Parabol (P) như hình dưới. a) Kết luận gì về dấu của hệ số a? b) Nêu khoảng đồng biến và nghịch biến của hàm số. b) Xác định giá trị của hệ số a và b. + Cho phương trình 2 2 x m x m m 21 2 3 0 (1) với m là tham số. a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt với mọi m. b) Gọi 1 2 1 2 x x x x là hai nghiệm của phương trình (1). Tính 1 2 x x theo m. c) Với giá trị nào của tham số m thì 2 1 2 x x2 11. + Trong mặt phẳng tọa độ Oxy cho tam giác ABC biết A 0 1 B 2 1 C 6 3. a) Tính độ dài ba cạnh của tam giác ABC. b) Chứng tỏ tam giác ABC là tam giác vuông. c) Tính diện tích tam giác ABC. d) Tìm tọa độ trọng tâm G của tam giác ABC. e) Tìm tâm I đường tròn ngoại tiếp tam giác ABC. f) Lấy điểm K sao cho 1 2 BA BC BK. Tính diện tích tam giác AKC.
15 đề (70% trắc nghiệm + 30% tự luận) ôn thi cuối học kì 1 môn Toán 10
Tài liệu gồm 54 trang, được chia sẻ bởi thầy giáo Nguyễn Chín Em, tuyển tập 15 đề ôn thi cuối học kì 1 môn Toán 10, các đề được biên soạn theo hình thức đề thi 70% trắc nghiệm + 30% tự luận (theo điểm số), cũng chia sẻ toàn bộ file WORD (định dạng .doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong quá trình biên soạn đề thi và giảng dạy. Trích dẫn 15 đề (70% trắc nghiệm + 30% tự luận) ôn thi cuối học kì 1 môn Toán 10: + Câu nào sau đây không phải là mệnh đề? A. 4 là một số nguyên tố. B. 6 là một số tự nhiên. C. Nước là một loại chất lỏng. D. Hôm nay trời mưa to quá. + Phát biểu mệnh đề. Mệnh đề 2 x x 3 khẳng định rẳng: A. Bình phương của mỗi số thực bằng 3. B. Có ít nhất 1 số thực mà bình phương của nó bằng 3. C. Chỉ có 1 số thực có bình phương bằng 3. D. Nếu x là số thực thì 2 x 3. + Một dung dịch chứa 30% axit nitơic (tính theo thể tích) và một dung dịch khác chứa 55% axit nitoric. Cần phải trộn thêm bao nhiêu lít dung dịch loại 1 và loại 2 để được 100 lít dung dịch 50% axit nitoric? A. 70 lít dung dịch loại 1 và 30 lít dung dịch loại 2. B. 20 lít dung dịch loại 1 và 80 lít dung dịch loại 2. C. 30 lít dung dịch loại 1 và 70 lít dung dịch loại 2. D. 80 lít dung dịch loại 1 và 20 lít dung dịch loại 2. + Cho ABC có trọng tâm G. I là trung điểm của BC. Tập hợp điểm M sao cho: 2 3 MA MB MC MB MC là: A. đường thẳng GI. B. đường tròn ngoại tiếp ABC. C. đường trung trực của đoạn GI. D. đường trung trực của đoạn AI. + Tại một công trình xây dựng có ba tổ công nhân cùng làm các chậu hoa giống nhau. Số chậu của tổ I làm trong 1 giờ ít hơn tổng số chậu của tổ II và tổ III làm trong 1 giờ là 5 chậu. Tổng số chậu của tổ I làm trong 4 giờ và tổ II làm trong 3 giờ nhiều hơn số chậu của tổ (III) làm trong 5 giờ là 30 chậu. Số chậu của tổ I làm trong 2 giờ cộng với số chậu của tồ (II) làm trong 5 giờ và số chậu của tổ (III) làm trong 3 giờ là 76 chậu. Biết rằng số chậu của mỗi tổ làm trong 1 giờ là không đổi. Hỏi trong 1 giờ tổ I làm được bao nhiêu chậu?
Tuyển tập 20 đề ôn thi cuối học kì 1 môn Toán 10
Tài liệu gồm 59 trang, được chia sẻ bởi thầy giáo Nguyễn Chín Em, tuyển tập 20 đề ôn thi cuối học kì 1 môn Toán 10, giúp học sinh khối lớp 10 rèn luyện để chuẩn bị cho kì thi HK1 Toán 10 năm học 2021 – 2022. Trích dẫn tài liệu tuyển tập 20 đề ôn thi cuối học kì 1 môn Toán 10: + Trong ngày hội mua sắm trực tuyến Online Friday, cửa hàng T đã tiến hành giảm giá và bán đồng giá nhiều sản phẩm. Các loại áo bán đồng giá x (đồng), các loại mũ bán đồng giá y (đồng), các loại túi xách bán đồng giá z (đồng). Ba người bạn Nga, Lan, Hòa đã cùng nhau mua sắm trực tuyến tại của hàng T. Nga mua 2 chiếc áo, 1 mũ, 3 túi xách hết 1450000 (đồng); Lan mua 1 chiếc áo, 2 mũ, 1 túi xách hết 1050000 (đồng); Hòa mua 3 chiếc áo, 2 túi xách hết 1100000 (đồng). Hỏi x, y, z lần lượt là bao nhiêu? A. 150000; 250000;350000. B. 300000;300000;250000. C. 200000;250000;250000. D. 200000;300000; 250000. + Cho 2 phương trình 2 x x 1 0 1 và 1 2 x x 2. Khẳng định đúng nhất trong các khẳng định sau là: A. (1) và (2) tương đương. B. Phương trình (1) là hệ quả của phương trình (2). C. Phương trình (2) là hệ quả của phương trình (1). D. Cả A, B, C đều đúng. + Cho ba điểm A B C phân biệt. Tập hợp những điểm M mà CM CB CA CB là: A. Đường thẳng đi qua A và vuông góc với BC. B. Đường thẳng đi quàa B và vuông góc với AC. C. Đường thẳng đí qua C (và vuông góc với AB. D. Đường tròn đường kính AB. + Trong một lớp học có 100 học sinh, 35 học sinh chơi bóng đá và 45 học sinh chơi bóng chuyền, 10 học sinh chơi cả hai môn thể thao. Hỏi có bao nhiêu học sinh không chơi môn thể thao nào? (Biết rằng chỉ có hai môn thể thao là bóng đá và bóng chuyền). + Cho tam giác ABC. Gọi F là điểm trên cạnh BC kéo dài sao cho 5 2 FB FC 1 1 2 2 x x x x 13 Chứng minh 5 2 3 3 AF AB AC b) Trong mặt phẳng tọa độ Oxy cho các điểm A 1 2 B 2 3 C 0 2. Xác định tọa độ điểm H là hình chiếu vuông góc của A lên BC. Tính diện tích tam giác ABC. c) Cho tam giác nhọn ABC nội tiếp đường tròn O. Tìm điểm M thuộc O để biểu thức T MA MB MC 3 5 đạt giá trị lớn nhất và giá trị nhỏ nhất.
Tuyển tập 30 đề ôn tập học kì 1 Toán 10 có đáp án và lời giải chi tiết - Đặng Việt Đông
Tài liệu gồm 585 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, tuyển tập 30 đề ôn tập học kì 1 Toán 10 có đáp án và lời giải chi tiết, giúp học sinh lớp 10 tham khảo để chuẩn bị cho kì thi HK1 Toán 10 sắp tới. Mục lục tài liệu tuyển tập 30 đề ôn tập học kì 1 Toán 10 có đáp án và lời giải chi tiết – Đặng Việt Đông : Đề số 01: 50 câu trắc nghiệm (Trang 02). Đề số 02: 50 câu trắc nghiệm (Trang 29). Đề số 03: 35 câu trắc nghiệm + 03 câu tự luận (Trang 50). Đề số 04: 50 câu trắc nghiệm (Trang 73). Đề số 05: 35 câu trắc nghiệm + 03 câu tự luận (Trang 96). Đề số 06: 50 câu trắc nghiệm (Trang 115). Đề số 07: 35 câu trắc nghiệm + 03 câu tự luận (Trang 135). Đề số 08: 50 câu trắc nghiệm (Trang 147). Đề số 09: 35 câu trắc nghiệm + 03 câu tự luận (Trang 169). Đề số 10: 50 câu trắc nghiệm (Trang 186). Đề số 11: 28 câu trắc nghiệm + 05 câu tự luận (Trang 211). Đề số 12: 35 câu trắc nghiệm + 03 câu tự luận (Trang 225). Đề số 13: 35 câu trắc nghiệm + 05 câu tự luận (Trang 244). Đề số 14: 30 câu trắc nghiệm + 03 câu tự luận (Trang 263). Đề số 15: 35 câu trắc nghiệm + 04 câu tự luận (Trang 279). Đề số 16: 35 câu trắc nghiệm + 04 câu tự luận (Trang 297). Đề số 17: 35 câu trắc nghiệm + 04 câu tự luận (Trang 311). Đề số 18: 35 câu trắc nghiệm + 03 câu tự luận (Trang 325). Đề số 19: 35 câu trắc nghiệm + 03 câu tự luận (Trang 338). Đề số 20: 35 câu trắc nghiệm + 03 câu tự luận (Trang 344). Đề số 21: 50 câu trắc nghiệm (Trang 362). Đề số 22: 50 câu trắc nghiệm (Trang 389). Đề số 23: 50 câu trắc nghiệm (Trang 410). Đề số 24: 50 câu trắc nghiệm (Trang 431). Đề số 25: 50 câu trắc nghiệm (Trang 451). Đề số 26: 50 câu trắc nghiệm (Trang 473). Đề số 27: 50 câu trắc nghiệm (Trang 497). Đề số 28: 50 câu trắc nghiệm (Trang 518). Đề số 29: 50 câu trắc nghiệm (Trang 539). Đề số 30: 50 câu trắc nghiệm (Trang 563).