Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề tam giác

Tài liệu gồm 48 trang, tổng hợp lý thuyết SGK, phân dạng và hướng dẫn giải các dạng toán chuyên đề tam giác trong chương trình Hình học 7. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề tam giác: BÀI 8 . TỔNG BA GÓC CỦA MỘT TAM GIÁC. + Dạng 1. Tính số đo góc của một tam giác. + Dạng 2. Nhận biết một tam giác vuông, tìm các góc bằng nhau trong hình vẽ có tam giác vuông. + Dạng 3. Chứng minh hai đường thẳng song song bằng cách chứng minh hai góc bằng nhau. + Dạng 4. So sánh các góc dựa vào tính chất góc ngoài của tam giác. BÀI 9 . HAI TAM GIÁC BẰNG NHAU. + Dạng 1. Từ hai tam giác bằng nhau, xác định các cạnh bằng nhau, các góc bằng nhau. Tính độ dài đoạn thẳng, số đo góc. + Dạng 2. Viết kí hiệu về sự bằng nhau của hai tam giác. BÀI 10 . TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH – CẠNH – CẠNH (C.C.C). + Dạng 1. Vẽ tam giác biết độ dài ba cạnh. + Dạng 2. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp cạnh- cạnh- cạnh. Sắp xếp lại trình tự lời giải bài toán chứng minh hai tam giác bằng nhau. + Dạng 3. Sử dụng trường hợp bằng nhau cạnh- cạnh- cạnh để chứng minh hai góc bằng nhau. BÀI 11 . TRƯỜNG HỢP BẰNG NHAU THỨ HAI CỦA TAM GIÁC CẠNH – GÓC – CẠNH (C.G.C). + Dạng 1. Vẽ tam giác biết hai cạnh và góc xen giữa. + Dạng 2. Bổ sung thêm điều kiện để hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. + Dạng 3. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. Sắp xếp lại trình tự giải bài toán chứng minh hai tam giác bằng nhau. + Dạng 4. Sử dụng trường hợp bằng nhau cạnh – góc – cạnh để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. BÀI 12 . TRƯỜNG HỢP BẰNG NHAU THỨ BA CỦA TAM GIÁC GÓC – CẠNH – GÓC (G.C.G). + Dạng 1. Vẽ tam giác biết một cạnh và hai góc kề. + Dạng 2. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp góc – cạnh – góc. + Dạng 3. Sử dụng trường hợp bằng nhau góc – cạnh – góc. + Dạng 4. Sử dụng nhiều trường hợp bằng nhau của tam giác. + Dạng 5. Tìm hoặc chứng minh hia tam giác vuông bằng nhau. + Dạng 6. Sử dụng trường hợp bằng nhau cạnh huyền – góc nhọn để chứng minh hai đoạn thẳng bằng nhau. [ads] BÀI 13 . TAM GIÁC CÂN. + Dạng 1. Vẽ tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 2. Bổ sung điều kiện để hai tam giác, hai tam giác vuông cân, hai tam giác đều bằng nhau. + Dạng 3. Nhận biết một tam giác là tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 4. Sử dụng định nghĩa tam giác cân, vuông cân, đều để suy ra các đoạn thẳng bằng nhau. + Dạng 5. Sử dụng tính chất của các tam giác cân, vuông cân, đều để tính số đo góc hoặc chứng minh hai góc bằng nhau. + Dạng 6. Chứng minh một tam giác là tam giác cân, vuông cân, đều để suy ra hai đoạn thẳng bằng nhau, hai góc bằng nhau. BÀI 14 . ĐỊNH LÝ PY – TA – GO. + Dạng 1. Tính độ dài một cạnh của tam giác vuông. + Dạng 2. Sử dụng định lý py-ta-go đảo để nhận biết tam giác vuông. BÀI 15 . CÁC TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC VUÔNG. + Dạng 1. Tìm hoặc chứng minh hai tam giác vuông bằng nhau. + Dạng 2. Bổ sung thêm điều kiện để hai tam giác vuông bằng nhau. + Dạng 3. Sử dụng các trường hợp bằng nhau của tam giác vuông để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. ÔN TẬP CHƯƠNG 2. + Dạng 1. Chọn câu phát biểu đúng, cho một hệ quả, tìm định lí trực tiếp suy ra hệ quả đó. + Dạng 2. Sử dụng trường hợp bằng nhau của tam giác để chứng minh hai đoạn thằng bằng nhau, hai góc bằng nhau; từ đó nhận biết tia phân giác của góc, đường trung trực của đoạn thẳng, hai đường thẳng vuông góc. + Dạng 3. Nhận biết tam giác vuông, tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 4. Tính độ dài cạnh của tam giác vuông.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề định lí và chứng minh định lí Toán 7
Tài liệu gồm 19 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề định lí và chứng minh định lí trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. 1. Định lí. Giả thiết và kết luận của định lí: – Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng: “Nếu … thì …”. – Phần giữa từ “nếu” và từ “thì” là giả thiết của định lí. – Phần sau từ “thì” là kết luận của định lí. 2. Thế nào là chứng minh định lí? – Chứng minh một định lí là dùng lập luận để từ giả thiết và những khẳng định đúng đã biết để suy ra kết luận của định lí. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Xác định giả thiết và kết luận của định lí. – Mỗi định lí thường được phát biểu dưới dạng: “Nếu … thì …”. – Phần giữa từ “nếu” và từ “thì” là giả thiết của định lí. – Phần sau từ “thì” là kết luận của định lí. Dạng 2. Chứng minh định lí. – Chứng minh một định lí là dùng lập luận để từ giả thiết và những khẳng định đúng đã biết để suy ra kết luận của định lí. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề tiên đề Euclid, tính chất của hai đường thẳng song song Toán 7
Tài liệu gồm 40 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tiên đề Euclid, tính chất của hai đường thẳng song song trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Tính số đo góc. + Dựa vào tính chất hai đường thẳng song song. Nếu biết số đo của một góc thì tính được số đo của góc kia. Dạng 2. Chứng minh hai đường thẳng song song, vuông góc. – Chứng minh hai đường thẳng song song: + Dựa vào dấu hiệu nhận biết hai đường thẳng song song. + Dựa vào tiên đề Euclid. + Dựa vào dấu hiệu: cùng vuông góc, cùng song song với đường thẳng thứ ba. – Chứng minh hai đường thẳng vuông góc: + Dựa vào dấu hiệu: Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia. + Dựa vào dấu hiệu: Hai đường thẳng cắt nhau trong bốn góc tạo thành có một góc vuông. PHẦN III . BÀI TẬP TƯƠNG TỰ LUYỆN.
Chuyên đề hai đường thẳng song song và dấu hiệu nhận biết Toán 7
Tài liệu gồm 32 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề hai đường thẳng song song và dấu hiệu nhận biết trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1: Xác định cặp góc so le trong, cặp góc đồng vị, cặp góc trong cùng phía, cặp góc so le ngoài trên hình vẽ cho trước. Vẽ hai đường thẳng song song hoặc kiểm tra xem hai đường thẳng có song song với nhau không? Tính số đo góc. + Dựa vào vị trí của các cặp góc xác định đúng cặp góc so le trong, cặp góc đồng vị, cặp góc trong cùng phía, cặp góc so le ngoài trên hình vẽ cho trước. + Dùng góc nhọn của ê-ke (Áp dụng thực hành 1 hoặc thực hành 2) để vẽ hai góc so le trong hoặc hai góc đồng vị bằng nhau. + Dùng thước đo góc để kiểm tra xem hai góc so le trong hoặc hai góc đồng vị (các góc tạo bởi một đường thẳng cắt hai đường thẳng cần kiểm tra có song song hay không) có bằng nhau hay không. Dạng 2: Nhận biết hai đường thẳng song song. Vận dụng tính số đo góc. + Dựa vào tính chất hai góc kề bù, đối đỉnh để chỉ ra hai góc so le trong hoặc hai góc đồng vị bằng nhau hoặc hai góc trong cùng phía bù nhau. + Áp dụng tính chất hai góc kề bù, đối đỉnh để lý luận và biến đổi tính góc. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề góc ở vị trí đặc biệt, tia phân giác của một góc Toán 7
Tài liệu gồm 33 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề góc ở vị trí đặc biệt, tia phân giác của một góc trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Góc ở vị trí đặc biệt. + Nhận biết và tính được một số góc kề bù, đối đỉnh. Dạng 2. Vẽ tia phân giác của một góc và áp dụng tính chất tia phân giác. + Bước 1: Biết vẽ góc với một số đo cho trước. + Bước 2: Biết áp dụng vẽ tia phân giác của góc theo số đo hoặc theo cách vẽ bằng thước hai lề. PHẦN III . BÀI TẬP TỰ LUYỆN.