Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề tam giác

Tài liệu gồm 48 trang, tổng hợp lý thuyết SGK, phân dạng và hướng dẫn giải các dạng toán chuyên đề tam giác trong chương trình Hình học 7. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề tam giác: BÀI 8 . TỔNG BA GÓC CỦA MỘT TAM GIÁC. + Dạng 1. Tính số đo góc của một tam giác. + Dạng 2. Nhận biết một tam giác vuông, tìm các góc bằng nhau trong hình vẽ có tam giác vuông. + Dạng 3. Chứng minh hai đường thẳng song song bằng cách chứng minh hai góc bằng nhau. + Dạng 4. So sánh các góc dựa vào tính chất góc ngoài của tam giác. BÀI 9 . HAI TAM GIÁC BẰNG NHAU. + Dạng 1. Từ hai tam giác bằng nhau, xác định các cạnh bằng nhau, các góc bằng nhau. Tính độ dài đoạn thẳng, số đo góc. + Dạng 2. Viết kí hiệu về sự bằng nhau của hai tam giác. BÀI 10 . TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH – CẠNH – CẠNH (C.C.C). + Dạng 1. Vẽ tam giác biết độ dài ba cạnh. + Dạng 2. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp cạnh- cạnh- cạnh. Sắp xếp lại trình tự lời giải bài toán chứng minh hai tam giác bằng nhau. + Dạng 3. Sử dụng trường hợp bằng nhau cạnh- cạnh- cạnh để chứng minh hai góc bằng nhau. BÀI 11 . TRƯỜNG HỢP BẰNG NHAU THỨ HAI CỦA TAM GIÁC CẠNH – GÓC – CẠNH (C.G.C). + Dạng 1. Vẽ tam giác biết hai cạnh và góc xen giữa. + Dạng 2. Bổ sung thêm điều kiện để hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. + Dạng 3. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. Sắp xếp lại trình tự giải bài toán chứng minh hai tam giác bằng nhau. + Dạng 4. Sử dụng trường hợp bằng nhau cạnh – góc – cạnh để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. BÀI 12 . TRƯỜNG HỢP BẰNG NHAU THỨ BA CỦA TAM GIÁC GÓC – CẠNH – GÓC (G.C.G). + Dạng 1. Vẽ tam giác biết một cạnh và hai góc kề. + Dạng 2. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp góc – cạnh – góc. + Dạng 3. Sử dụng trường hợp bằng nhau góc – cạnh – góc. + Dạng 4. Sử dụng nhiều trường hợp bằng nhau của tam giác. + Dạng 5. Tìm hoặc chứng minh hia tam giác vuông bằng nhau. + Dạng 6. Sử dụng trường hợp bằng nhau cạnh huyền – góc nhọn để chứng minh hai đoạn thẳng bằng nhau. [ads] BÀI 13 . TAM GIÁC CÂN. + Dạng 1. Vẽ tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 2. Bổ sung điều kiện để hai tam giác, hai tam giác vuông cân, hai tam giác đều bằng nhau. + Dạng 3. Nhận biết một tam giác là tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 4. Sử dụng định nghĩa tam giác cân, vuông cân, đều để suy ra các đoạn thẳng bằng nhau. + Dạng 5. Sử dụng tính chất của các tam giác cân, vuông cân, đều để tính số đo góc hoặc chứng minh hai góc bằng nhau. + Dạng 6. Chứng minh một tam giác là tam giác cân, vuông cân, đều để suy ra hai đoạn thẳng bằng nhau, hai góc bằng nhau. BÀI 14 . ĐỊNH LÝ PY – TA – GO. + Dạng 1. Tính độ dài một cạnh của tam giác vuông. + Dạng 2. Sử dụng định lý py-ta-go đảo để nhận biết tam giác vuông. BÀI 15 . CÁC TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC VUÔNG. + Dạng 1. Tìm hoặc chứng minh hai tam giác vuông bằng nhau. + Dạng 2. Bổ sung thêm điều kiện để hai tam giác vuông bằng nhau. + Dạng 3. Sử dụng các trường hợp bằng nhau của tam giác vuông để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. ÔN TẬP CHƯƠNG 2. + Dạng 1. Chọn câu phát biểu đúng, cho một hệ quả, tìm định lí trực tiếp suy ra hệ quả đó. + Dạng 2. Sử dụng trường hợp bằng nhau của tam giác để chứng minh hai đoạn thằng bằng nhau, hai góc bằng nhau; từ đó nhận biết tia phân giác của góc, đường trung trực của đoạn thẳng, hai đường thẳng vuông góc. + Dạng 3. Nhận biết tam giác vuông, tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 4. Tính độ dài cạnh của tam giác vuông.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề quan hệ giữa đường vuông góc và đường xiên Toán 7
Tài liệu gồm 20 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa đường vuông góc và đường xiên trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Nhận biết đường vuông góc, đường xiên. Tìm khoảng cách của một điểm đến một đường thẳng. – Dựa vào khái niệm đường vuông góc, đường xiên để nhận biết các loại đường đó. – Tính khoảng cách từ một điểm đến một đường thẳng chính là tính độ dài đường vuông góc kẻ từ điểm đó đến đường thẳng. Dạng 2 . Quan hệ giữa đường vuông góc và đường xiên. – Sử dụng định lý đường vuông góc ngắn hơn đường xiên (từ một điểm đến cùng một đường thẳng). PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7
Tài liệu gồm 20 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. So sánh các góc trong một tam giác. + TH1: Nếu các góc cần so sánh nằm trong cùng một tam giác thì ta áp dụng định lí 1: So sánh các cạnh đối diện với các góc đó. + TH2: Nếu các góc cần so sánh không cùng nằm trong cùng một tam giác thì ta dùng góc trung gian để so sánh. Dạng 2. So sánh các cạnh trong một tam giác. + TH1: Nếu các cạnh cần so sánh nằm trong cùng một tam giác thì ta áp dụng định lí 2: So sánh các góc đối diện với các cạnh đó. + TH2: Nếu các góc cần so sánh không cùng nằm trong cùng một tam giác thì ta dùng góc trung gian để so sánh. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề tam giác cân, đường trung trực của đoạn thẳng Toán 7
Tài liệu gồm 26 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tam giác cân, đường trung trực của đoạn thẳng trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Chứng minh tam giác cân, tam giác đều và sử dụng tính chất của tam giác cân, tam giác đều để giải quyết bài toán. Dựa và dấu hiệu nhận biết của tam giác cân, tam giác đều. Dựa vào tính chất của tam giác cân, tam giác đều để tính số đo góc hoặc chứng minh các góc bằng nhau, các cạnh bằng nhau. Dạng 2 . Vận dụng tính chất của đường trung trực để giải quyết bài toán. Sử dụng tính chất: Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó. Dạng 3 . Chứng minh một điểm thuộc đường trung trực. Chứng minh một đường thẳng là đường trung trực của một đoạn thẳng. + Để chứng minh điểm M thuộc trung trực của đoạn thẳng AB, ta dùng nhận xét: Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó. + Để chứng minh đường thẳng d là đường trung trực của đoạn thẳng AB, ta chứng minh d chứa hai điểm phân biệt cách đều A và B hoặc dùng định nghĩa đường trung trực. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề các trường hợp bằng nhau của tam giác vuông Toán 7
Tài liệu gồm 26 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề các trường hợp bằng nhau của tam giác vuông trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Tìm hoặc chứng minh hai tam giác vuông bằng nhau. + Xét hai tam giác vuông. + Kiểm tra các điều kiện bằng nhau cạnh – góc – cạnh, góc – cạnh – góc, cạnh huyền – góc nhọn, cạnh huyền – cạnh góc vuông. + Kết luận hai tam giác bằng nhau. Dạng 2. Sử dụng các trường hợp bằng nhau của tam giác vuông để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. Tính độ dài đoạn thẳng, số đo góc. + Chọn hai tam giác vuông có cạnh (góc) là đoạn thẳng (góc) cần tính hoặc chứng minh bằng nhau. + Tìm thêm hai điều kiện bằng nhau, trong đó có một điều kiện về cạnh, để kết luận hai tam giác bằng nhau. + Suy ra các cạnh (góc) tương ứng bằng nhau và kết luận. PHẦN III . BÀI TẬP TỰ LUYỆN.