Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng ôn 50 dạng toán thi tốt nghiệp THPT năm 2022 môn Toán

Tài liệu gồm 310 trang, tuyển tập 50 dạng toán tổng ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2021 – 2022. Chương 1 . 50 Dạng Toán THPT Quốc Gia 1. Bài 1. PHÂN TÍCH CHI TIẾT ĐỀ MINH HỌA BỘ GIÁO DỤC 2022 1. Câu 1. Đề minh hoạ BGD 2022 1. + Dạng 1. Xác định mô-đun, phần thực, phần ảo, số phức liên hợp của số phức1. Câu 2. Đề minh hoạ BGD 2022 2. + Dạng 2. Phương trình mặt cầu 3. Câu 3. Đề minh hoạ BGD 2022 3. + Dạng 3. Tìm điểm trên đồ thị hàm số 4. Câu 4. Đề minh hoạ BGD 2022 4. + Dạng 4. Tổ hợp-Chỉnh hợp-Hoán vị 4. Câu 5. Đề minh hoạ BGD 2022 6. + Dạng 5. Tìm nguyên hàm bằng định nghĩa, tính chất, bảng nguyên hàm 6. Câu 6. Đề minh hoạ BGD 2022 7. + Dạng 6. Tìm cực trị của hàm số dựa vào bảng biến thiên 7. Câu 7. Đề minh hoạ BGD 2022 8. + Dạng 7. Bất phương trình mũ cơ bản 8. Câu 8. Đề minh hoạ BGD 2022 8. + Dạng 8. Tính thể tích khối chóp 9. Câu 9. Đề minh hoạ BGD 2022 9. + Dạng 9. Hàm số lũy thừa 9. Câu 10. Đề minh hoạ BGD 2022 10. + Dạng 10. Phương trình mũ-Phương trình logarit cơ bản 10. Câu 11. Đề minh hoạ BGD 2022 11. + Dạng 11. Tính tích phân bằng định nghĩa và tính chất tích phân 11. Câu 12. Đề minh hoạ BGD 2022 12. + Dạng 12. Xác định các yếu tố cơ bản số phức qua các phép toán 12. Câu 13. Đề minh hoạ BGD 2022 13. + Dạng 13. Tìm VTPT của mặt phẳng 13. Câu 14. Đề minh hoạ BGD 2022 14. + Dạng 14. Tìm tọa độ điểm-Tọa độ vec-tơ liên quan đến hệ tọa độ Oxyz 14. Câu 15. Đề minh hoạ BGD 2022 15. + Dạng 15. Biểu diễn hình học của số phức 15. Câu 16. Đề minh hoạ BGD 2022 15. + Dạng 16. Tiệm cận của đồ thị hàm số 16. Câu 17. Đề minh hoạ BGD 2022 17. + Dạng 17. Biến đổi, rút gọn biểu thức có chứa logarit 18. Câu 18. Đề minh hoạ BGD 2022 18. + Dạng 18. Nhận dạng đồ thị hay BBT của hàm số 19. Câu 19. Đề minh hoạ BGD 2022 20. + Dạng 19. Xác định các yếu tố cơ bản của đường thẳng 20. Câu 20. Đề minh hoạ BGD 2022 22. + Dạng 20. Tổ hợp-Chỉnh hợp-Hoán vị 22. Câu 21. Đề minh hoạ BGD 2022 23. + Dạng 21. Tính thể tích khối lăng trụ 24. Câu 22. Đề minh hoạ BGD 2022 24. + Dạng 22. Tính đạo hàm hàm số mũ-logarit 24. Câu 23. Đề minh hoạ BGD 2022 25. + Dạng 23. Xét sự đồng biến-nghịch biến của hàm số dựa vào bảng biến thiên26. Câu 24. Đề minh hoạ BGD 2022 26. + Dạng 24. Câu hỏi lý thuyết về khối nón-khối trụ 26. Câu 25. Đề minh hoạ BGD 2022 28. + Dạng 25. Tính tích phân bằng tích chất của tích phân 28. Câu 26. Đề minh hoạ BGD 2022 29. + Dạng 26. Cấp số cộng-Cấp số nhân 30. Câu 27. Đề minh hoạ BGD 2022 30. + Dạng 27. Tính nguyên hàm bằng định nghĩa, tính chất và bảng nguyên hàm31. Câu 28. Đề minh hoạ BGD 2022 31. + Dạng 28. Tìm cực trị của hàm số dựa vào bảng biến thiên 32. Câu 29. Đề minh hoạ BGD 2022 32. + Dạng 29. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [a; b] 33. Câu 30. Đề minh hoạ BGD 2022 33. + Dạng 30. Xét sự đồng biến , nghịch biến của hàm số cho bởi công thức 34. Câu 31. Đề minh hoạ BGD 2022 34. + Dạng 31. Tính giá trị biểu thức có chứa logarit 35. Câu 32. Đề minh hoạ BGD 2022 35. + Dạng 32. Tính góc giữa đường thẳng và mặt phẳng 36. Câu 33. Đề minh hoạ BGD 2022 38. + Dạng 33. Tính tích phân bằng tính chất tích phân 39. Câu 34. Đề minh hoạ BGD 2022 39. + Dạng 34. Viết phương trình mặt phẳng 40. Câu 35. Đề minh hoạ BGD 2022 42. + Dạng 35. Thực hiện các phép toán về số phức: Cộng-trừ-nhân-chia 42. Câu 36. Đề minh hoạ BGD 2022 42. + Dạng 36. Khoảng cách từ một điểm đến mặt phẳng 43. Câu 37. Đề minh hoạ BGD 2022 44. + Dạng 37. Tính xác suất của biến cố 45. Câu 38. Đề minh hoạ BGD 2022 45. + Dạng 38. Viết phương trình đường thẳng 45. Câu 39. Đề minh hoạ BGD 2022 46. + Dạng 39. Bất phương trình mũ – Logarit- BPT tích 47. Câu 40. Đề minh hoạ BGD 2022 47. + Dạng 40. Sự tương giao của hai đồ thị hàm số 48. Câu 41. Đề minh hoạ BGD 2022 49. + Dạng 41. Tìm nguyên hàm của hàm số thỏa điều kiện cho trước 49. Câu 42. Đề minh hoạ BGD 2022 49. + Dạng 42. Thể tích khối chóp-khối lăng trụ liên quan đến khoảng cách, góc.50. Câu 43. Đề minh hoạ BGD 2022 51. + Dạng 43. Xác định các yếu tố cơ bản của số phức qua các phép toán hay bài toán qui về phương trình, hệ phương trình nghiệm thực – PT bậc 2 52. Câu 44. Đề minh hoạ BGD 2022 52. + Dạng 44. Min- Max của số phức 54. + Dạng 45. Sử dụng biến đổi đại số kết hợp với các bất đẳng thức quen thuộc để đánh giá 55. + Dạng 46. Sử dụng biểu diễn hình học của số phức đưa về các bài toán cực trị quen thuộc 56. Câu 45. Đề minh hoạ BGD 2022 57. + Dạng 47. Tính diện tích hình phẳng 59. Câu 46. Đề minh hoạ BGD 2022 59. + Dạng 48. Viết phương trình đường thẳng 60. Câu 47. Đề minh hoạ BGD 2022 61. + Dạng 49. Tính thể tích của khối nón, khối trụ liên quan đến thiết diện của nón hay trụ 62. Câu 48. Đề minh hoạ BGD 2022 64. + Dạng 50. Bất phương trình mũ-loagrit- Phương pháp đặt ẩn phụ- phương pháp hàm số 65. Câu 49. Đề minh hoạ BGD 2022 65. + Dạng 51. Bài toán liên quan đến mặt cầu-mặt phẳng-đường thẳng 66. Câu 50. Đề minh hoạ BGD 2022 67. + Dạng 52 68. Phần I Tổng ôn các câu hỏi mức độ TB – Khá. Chương 2. Hình không gian Oxyz 71. Bài 1. Hệ trục tọa độ, góc, khoảng cách & vị trí tương đối 71. A Kiến thức cần nhớ 71. Bài 2. Mặt cầu và phương trình mặt cầu 82. A Phương trình mặt cầu 83. B Các dạng viết phương trình mặt cầu thường gặp 83. Bài 3. Mặt phẳng và phương trình mặt phẳng 90. A Mặt phẳng 90. B Phương trình mặt phẳng 90. Bài 4. Đường thẳng và phương trình đường thẳng 99. A Đường thẳng 99. B Phương trình đường thẳng 99. Bảng đáp án 110. Chương 3. Nguyên hàm, tích phân và ứng dụng 112. Bài 1. Tính chất nguyên hàm và tích phân, bảng nguyên hàm 112. Bài 2. Diện tích & thể tích tròn xoay 127. Bài 3. Thể tích theo mặt cắt S(x) ⇒ V = Z b a S(x) dx 132. Bảng đáp án 137. Chương 4. Số phức 138. Bảng đáp án 145. Chương 5. Cấp số cộng – Cấp số nhân – Tổ hợp – Xác suất 146. Bài 1. Cấp số cộng và cấp số nhân 146. Bài 2. Hoán vị – Chỉnh hợp – Tổ hợp 149. Bài 3. Xác suất 151. Bảng đáp án 155. Chương 6. Góc & khoảng cách 157. Bài 1. Góc giữa đường thẳng và mặt phẳng 157. Bài 2. Góc giữa hai mặt phẳng 159. Bài 3. Góc giữa hai đường thẳng 161. Bài 4. Khoảng cách từ một điểm đến mặt phẳng 162. Bài 5. Khoảng cách giữa hai đường thẳng chéo nhau 164. Bảng đáp án 168. Chương 7. Hàm số và các vấn đề liên quan đến hàm số 169. Bài 1. Đơn điệu và cực trị 169. Bài 2. Giá trị lớn nhất và nhỏ nhất 177. Bài 3. Tiệm cận 188. Bài 4. Nhận dạng đồ thị hàm số 191. Bài 5. Sự tương giao 194. Bài 6. Phương trình tiếp tuyến 195. Bảng đáp án 196. Chương 8. Mũ & Lôgarit 198. Bài 1. Công thức mũ & lôgarit và bài toán biến đổi 198. Bài 2. Tập xác định và đạo hàm của hàm số mũ, hàm số logarit 203. Bài 3. Tập xác định và đạo hàm 208. Bài 4. Phương trình và bất phương trình mũ, lôgarit 210. A Kiến thức cần nhớ 210. B Bài tập luyện tập 210. Bảng đáp án 217. Chương 9. Thể tích khối đa diện 218. Bài 1. Thể tích khối chóp 218. Bài 2. Thể tích lăng trụ, lập phương, hộp chữu nhật 221. Bảng đáp án 225. Chương 10. Nón – trụ – cầu 226. Bài 1. Khối nón 226. Bài 2. Khối trụ 228. Bài 3. Khối cầu 232. Bảng đáp án 233. Phần II Tổng ôn mức vận dụng – vận dụng cao. Chương 39. Bất phương trình mũ – Logarit 236. A Bài tập mẫu 236. B Bài tập tương tự và phát triển 236. Bảng đáp án 239. Chương 40. Hàm số 240. A Bài tập mẫu 240. B Bài tập tương tự và phát triển 241. Bảng đáp án 249. Chương 41. Nguyên hàm – Tích phân hàm ẩn 250. A Bài tập mẫu 250. B Bài tập tương tự và phát triển 250. Bảng đáp án 253. Chương 42. Thể tích khối đa diện 254. A Bài tập mẫu 254. B Bài tập tương tự và phát triển 254. Bảng đáp án 260. Chương 43. Số phức 261. A Bài tập mẫu 261. B Bài tập tương tự và phát triển 261. Bảng đáp án 264. Chương 44. Cực trị số phức 265. A Bài tập mẫu 265. B Bài tập tương tự và phát triển 266. Bảng đáp án 268. Chương 45. Ứng dụng tích phân 269. A Bài tập mẫu 269. B Bài tập tương tự và phát triển 270. Bảng đáp án 275. Chương 46. Toạ độ không gian Oxyz 276. A Bài tập mẫu 276. B Bài tập tương tự và phát triển 276. Bảng đáp án 282. Chương 47. Khối tròn xoay 283. A Bài tập mẫu 283. B Bài tập tương tự và phát triển 283. Bảng đáp án 287. Chương 48. Mũ – Logarit 288. A Bài tập mẫu 288. B Bài tập tương tự và phát triển 288. Bảng đáp án 291. Chương 49. Toạ độ không gian Oxyz 292. A Bài tập mẫu 292. B Bài tập tương tự và phát triển 292. Bảng đáp án 297. Chương 50. Max – min hàm số 298. A Bài tập mẫu 298. B Bài tập tương tự và phát triển 299. Bảng đáp án 302.

Nguồn: toanmath.com

Đọc Sách

131 bài toán ứng dụng thực tiễn có lời giải chi tiết - Trần Văn Tài
Tài liệu gồm 74 trang với 131 bài toán ứng dụng thực tiễn thường gặp do thầy Trần Văn Tài biên soạn. Các bài toán đều có lời giải chi tiết. Trích một số phần trong tài liệu: 1. Đường dây điện 110KV kéo từ trạm phát (điểm A) trong đất liền ra Côn Đảo (điểm C). biết khoảng cách ngắn nhất từ C đến B là 60km, khoảng cách từ A đến B là 100km, mỗi km dây điện dưới nước chi phí là 5000 USD, chi phí cho mỗi km dây điện trên bờ là 3000 USD. Hỏi điểm G cách A bao nhiêu để mắc dây điện từ A đến G rồi từ G đến C chi phí ít nhất. [ads] 2. Cho một tấm nhôm hình vuông cạnh 6 cm. Người ta muốn cắt một hình thang như hình vẽ. Tìm tổng x + y để diện tích hình thang EFGH đạt giá trị nhỏ nhất. 3. Nhân ngày phụ nữ Việt Nam 20 -10 năm 2017 , ông A quyết định mua tặng vợ một món quà và đặt nó vào trong một chiếc hộp có thể tích là 32 (đvtt) có đáy hình vuông và không có nắp . Để món quà trở nên thật đặc biệt và xứng đáng với giá trị của nó ông quyết định mạ vàng cho chiếc hộp , biết rằng độ dạy lớp mạ tại mọi điểm trên hộp là như nhau . Gọi chiều cao và cạnh đáy của chiếc hộp lần lượt là h; x. Để lượng vàng trên hộp là nhỏ nhất thì giá trị của h; x phải là ?
87 bài toán thực tế có lời giải chi tiết - Nguyễn Tiến Minh
Tài liệu gồm 49 trang cung cấp một số công thức thường gặp trong bài toán thực tế, kèm theo 87 câu trắc nghiệm có lời giải chi tiết. Trích dẫn tài liệu : + Ông A vay ngắn hạn ngân hàng 100 triệu đồng, với lãi suất 12% trên năm. Ông muốn hoàn nợ cho ngân hàng theo cách sau: sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng ba tháng kể từ ngày vay. Hỏi, theo cách đó, số tiền m mà ông A phải trả cho ngân hàng theo cách đó là bao nhiêu? Biết rằng, lãi suất ngân hàng không thay đổi trong thời gian ông A hoàn nợ. [ads] + Theo dự báo với mức tiêu thụ dầu không đổi như hiện nay thì trữ lượng dầu của nước A sẽ hết sau 100 năm nữa. Nhưng do nhu cầu thực tế, mức tiêu thụ tăng lên 4% mỗi năm. Hỏi sau bao nhiêu năm số dầu dự trũ của nước A sẽ hết. + Biết rằng năm 2001, dân số Việt Nam là 78.685.800 người và tỉ lệ tăng dân số năm đó là 1,7%. Cho biết sự tăng dân số được ước tính theo công thức: S = A.e^(Nr) (trong đó A: là dân số của năm lấy làm mốc tính, S là dân số sau N năm, r là tỉ lệ tăng dân số hàng năm). cứ tăng dân số với tỉ lệ như vậy thì đến năm nào dân số nước ta ở mức 120 triệu người.
Một số phương pháp giải nhanh toán trắc nghiệm bằng máy tính bỏ túi - Nguyễn Vũ Thụ Nhân
Tài liệu gồm 43 trang của tác giả Nguyễn Vũ Thụ Nhân trình bày các mẹo giải nhanh toán trắc nghiệm bằng cách sử dụng máy tính Casio.
Chuyên đề ứng dụng của toán học phổ thông vào thực tiễn
Tài liệu gồm 68 trang hướng dẫn phương pháp giải các bài toán ứng dụng thực tiễn trong nhiều tình huống thực tế khác nhau trong cuộc sống. Có lẽ ai đã từng học toán, đang học toán đều có suy nghĩ rằng toán học ngoài những phép tính đơn giản như cộng, trừ nhân chia … thì hầu hết các kiến thức toán khác là rất trừu tượng đối với học sinh. Vì vậy việc học toán trở thành một áp lực nặng nề đối với học sinh. Họ nghĩ rằng toán học là mơ hồ xa xôi, học chỉ là học mà thôi. Học sinh học toán chỉ có một mục đích duy nhất đó là thi cử. Hình như ngoài điều đó ra các em không biết học toán để làm gì.Vì vậy họ có quyền nghi ngờ rằng liệu toán học có ứng dụng vào thực tế được không nhỉ? [ads] Sự thật là toán học có rất nhiều ứng dụng vào thực tế và nó thể hiện rất rõ trong cuộc sống hằng ngày của con người nhưng chúng ta không để ý mà thôi. Với mục đích giúp cho học sinh thấy rằng toán học là rất gần gũi với cuộc sống xung quanh, hoàn toàn rất thực tế và việc tiếp thu các kiến thức toán ở nhà trường không chỉ để thi cử mà nó còn là những công cụ đắc lực để giúp các em giải quyết các vấn đề, tình huống đơn giản trong thực tế.