Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hình học không gian - Đặng Thành Nam

Tài liệu gồm 36 trang trình bày phương pháp giải các dạng toán hình học không gian và các ví dụ minh họa có lời giải chi tiết. Các nội dung chính trong tài liệu : Các yếu tố trong tam giác cần nắm vững Các công thức tính thể tích Phương pháp xác định chiều cao của khối chóp + Loại 1: Khối chóp có một cạnh vuông góc với đáy đó chính là chiều cao của khối chóp. + Loại 2: Khối chóp có một mặt bên vuông góc với đáy thì đường cao chính là đường kẻ từ đỉnh khối chóp đến giao tuyến của mặt bên đó với đáy khối chóp. + Loại 3: Khối chóp có hai mặt bên kề nhau cùng vuông góc với đáy thì đường cao chính là giao tuyến của hai mặt bên đó. + Loại 4: Khối chóp có các cạnh bên bằng nhau hoặc cùng tạo với đáy một góc bằng nhau thì đường cao là đường kẻ từ đỉnh khối chóp đến tâm vòng tròn ngoại tiếp đáy + Loại 5: Khối chóp có các mặt bên cùng tạo với đáy một góc bằng nhau thì đường cao là đường kẻ từ đỉnh đến tâm vòng tròn nội tiếp đáy. + Loại 6: Khối chóp có hai mặt bên cùng tạo với đáy một góc bằng nhau thì chân đường cao khối chóp hạ từ đỉnh sẽ nằm trên đường phân giác của góc tạo bởi hai cạnh nằm trên mặt đáy của hai mặt bên. Chẳng hạn khối chóp S.ABCD có hai mặt bên (SAC) và (SAB) cùng tạo với đáy góc a khi đó chân đường cao của khối chóp hạ từ đỉnh S nằm trên đường phân giác của góc BAC. + Loại 7: Khối chóp có hai cạnh bên bằng nhau hoặc cùng tạo với đáy một góc bằng nhau thì chân đường cao hạ từ đỉnh khối chóp nằm trên đường trung trực nối giữa hai giao điểm của hai cạnh bên với đáy. Chẳng hạn khối chóp S.ABCD có cạnh SB, SD khi đó chân đường cao của khối chóp hạ từ đỉnh S nằm trên đường trung trực của BD. Việc xác định chân đường cao của khối chóp giúp ta giải quyết bài toán [ads] + Tính thể tích khối chóp. + Tính góc tạo bởi đường thẳng hoặc mặt phẳng bên với đáy hoặc tính góc giữa hai mặt bên khối chóp(góc tạo bởi cạnh bên và mặt đáy chính là góc tạo bởi cạnh bên và đường thẳng nối chân đường cao khối chóp và giao điểm của cạnh bên với đáy). + Tính khoảng cách từ một điểm tới một mặt phẳng. Phương pháp tính thể tích khối đa diện + Khi xác định được chiều cao khối chóp thì áp dụng cách tính trực tiếp thể tích khối chóp. + Phân chia khối đa diện thành nhiều khối đa diện hơn và dễ tính thể tích hơn. + Dùng tỷ số thể tích. Khoảng cách từ một điểm đến một mặt phẳng Tìm tâm và bán kính mặt cầu ngoại tiếp khối đa diện Ví dụ minh họa có lời giải chi tiết Bài tập áp dụng tự luyện

Nguồn: toanmath.com

Đọc Sách

Bài toán góc và khoảng cách trong đề tham khảo THPTQG 2020 môn Toán
Tài liệu gồm 34 trang, phân tích và phát triển bài toán góc và khoảng cách trong đề tham khảo THPTQG 2020 môn Toán, cụ thể đó là câu 37 và câu 49. Câu 37 là bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong hình chóp có đường cao cho trước. Một bài ở mức độ vận dụng. Có hai ý tưởng nổi bật trong bài: + Thứ nhất: Là bài toán tính khoảng cách giữa hai đường thẳng chéo nhau và không vuông góc với nhau: Một đường nằm trong mặt phẳng đáy và một đường là cạnh bên. + Thứ hai: Đáy của hình chóp là một hình thang rất hay, rất đặc biệt: từ đó dẫn đến đường chéo vuông góc với cạnh bên, là rút ngắn cách tính khoảng cách. [ads] Câu 49 có hai nội dung trọng tâm: Thể tích và Góc giữa hai mặt phẳng. + Phân tích về bài toán thể tích: Một bài toán thể tích kiểm tra được hai kỹ năng: Thứ nhất là xác định và tính đường cao; Thứ hai là tính diện tích đáy. + Bài toán góc giữa hai mặt phẳng luôn là bài toán khó nhất trong các bài toán hình học không gian. Câu 49 đưa ra hai vấn đề khó thường gặp và kiểm tra kiến thức cơ bản về góc: Khó thứ nhất là cái khó chung của bài toán hình học không gian, là hình trong bài không có đường cao cho trước. Khó thứ hai là cái khó riêng của bài toán góc giữa hai mặt phẳng. Ở đây câu 49 này còn kết hợp hết cái khó của bài toán góc: Cho góc giữa hai mặt bên vào giả thiết. Muốn giải quyết được bài toán này phải khai thác được giả thiết góc.
Khối đa diện, nón - trụ - cầu trong các đề thi thử THPTQG môn Toán
Tài liệu gồm 514 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm các chuyên đề: khối đa diện và thể tích khối đa diện, mặt nón – mặt trụ – mặt cầu có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng), Hình học 12 chương 2 (mặt nón – mặt trụ – mặt cầu) và ôn thi THPT Quốc gia môn Toán. Nội dung tài liệu được chia thành 4 phần dựa theo độ khó của các câu hỏi và bài toán: + Phần 1. Mức độ nhận biết (Trang 3). + Phần 2. Mức độ thông hiểu (Trang 95). + Phần 3. Mức độ vận dụng thấp (Trang 284). + Phần 4. Mức độ vận dụng cao (Trang 442). Trích dẫn tài liệu khối đa diện, nón – trụ – cầu trong các đề thi thử THPTQG môn Toán: + Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì ta có thể chia hình lập phương thành? A. 4 tứ diện đều và 1 hình chóp tam giác đều. B. 5 tứ diện đều. C. 1 tứ diện đều và 4 hình chóp tam giác đều. D. 5 hình chóp tam giác đều, không có tứ diện đều. + Cho khối lập phương ABCD.A0B0C0D0. Mặt phẳng (ACC0) chia khối lập phương trên thành những khối đa diện nào? A. Hai khối lăng trụ tam giác ABC.A0B0C0 và ACD.A0C0D0. B. Hai khối chóp tam giác C0ABC và C0.ACD. C. Hai khối chóp tứ giác C0.ABCD và C0.ABB0A0. D. Hai khối lăng trụ tứ giác ABC.A0B0C0 và ACD.A0C0D0. [ads] + Cho hình chóp S.ABCD có đáy là hình thang cân với đáy AB = 2a, AD = BC = CD = a, mặt bên SAB là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ A đến mặt phẳng (SBC) bằng 2a√15/5, tính theo a thể tích V của khối chóp S.ABCD. + Trong không gian cho đoạn thẳng AB cố định và có độ dài bằng 4. Qua các điểm A và B lần lượt kẻ các tia Ax và By chéo nhau và hợp nhau góc 30◦, đồng thời cùng vuông góc với đoạn thẳng AB. Trên các tia Ax và By lần lượt lấy các điểm M, N sao cho MN = 5. Đặt AM = a, BN = b. Biết thể tích khối tứ diện ABMN bằng √3/3. Tính giá trị biểu thức S = (a2 + b2)2. + Cho tứ diện ABCD có thể tích V. Gọi A1B1C1D1 là tứ diện với các đỉnh lần lượt là trọng tâm tam giác BCD, CDA, DAB, ABC và có thể tích V1. Gọi A2B2C2D2 là tứ diện với các đỉnh lần lượt là trọng tâm tam giác B1C1D1, C1D1A1, D1A1B1, A1B1C1 và có thể tích V2, . . . cứ như vậy cho tứ diện AnBnCnDn có thể tích Vn với n là số tự nhiên lớn hơn 1. Tính giá trị của biểu thức P = lim n→+∞ (V + V1 + · · · + Vn).
Trắc nghiệm khối đa diện có giải chi tiết trong các đề thi thử Toán 2018
Khối đa diện là một trong những chủ đề quan trọng nhất và chiếm tỷ lệ điểm số cao nhất trong đề thi THPT Quốc gia môn Toán, các dạng toán và biến dạng mới về khối đa diện liên tục được sáng tạo và đưa vào các đề thi thử Toán nhằm giúp học sinh nắm vững và đầy đủ về chủ đề kiến thức này. Từ bộ sưu tập các đề thi thử Toán năm 2018, quý thầy, cô giáo trên cả nước đã tổng hợp, phân loại và giải chi tiết các câu hỏi và bài toán trắc nghiệm khối đa diện nhằm làm tư liệu ôn tập cho các học sinh khóa sau. Đây là nguồn tài liệu rất hữu ích đối với học sinh vì các đề thi thử Toán được sử dụng là các đề của các trường THPT, sở GD – ĐT, là sản phẩm trí tuệ cả tập thể thầy, cô giáo.
Chuyên đề thể tích khối đa diện - Phạm Thu Hiền
Tài liệu gồm 30 trang hệ thống hóa lý thuyết thể tích khối đa diện và hướng dẫn giải một số bài toán thể tích khối đa diện điển hình. Chuyên đề chủ yếu xoay quanh các bài toán THPT, hi vọng sẽ giúp ích được phần nào cho bạn đọc, đặc biệt là các bạn học sinh 12. Nội dung chuyên đề: Vấn đề 1 : Thể tích vật thể Thể tích vật thể K là phần mà vật thể đó chiếm chổ trong không gian Thể tích của vật thể K được kí hiệu V. V là một số lớn hơn 0 thỏa mãn các tính chất sau: 1. Hai khối đa diện bằng nhau thì thể tích bằng nhau 2. Thể tích khối lập phương bằng 1 thì V = 1 3. Nếu một khối đa diện được phân chia thành các khối đa diện thì thể tích khối ban đầu bằng tổng thể tích các khối đã phân chia Vấn đề 2 : Thể tích khối chóp Để tính thể tích khối chóp ta cần tính được chiều cao và diện tích đáy [ads] 1. Tính chiều cao Ta chính xác hóa chân đường cao + Hai đường xiên bằng nhau khi và chỉ khi hai hình chiếu bằng nhau, suy ra hình chóp có các cạnh bên bằng nha thì chân đường cao là tâm đường tròn ngoại tiếp đa giác đáy + Hai mặt phẳng vuông góc với nhau. Đường thẳng nào nằm trong mặt phẳng này mà vuông góc với giao tuyến thì vuông góc với mặt phẳng kia. Suy ra cách tìm hình chiếu H của A trên mp (P): • Tìm mặt phẳng pQq chứa A sao cho (Q) ⊥ (P) • Xác định giao tuyến d của (P) và (Q) • Trong (Q) dựng AH ⊥ d tại H + Hai mặt phẳng cắt nhau cùng vuông góc với một mặt phẳng thì giao tuyến của nó vuông góc với mặt phẳng đó + Hình chóp có các mặt bên tạo với đáy một góc bằng nhau thì chân đường cao trùng với tâm đường tròn nội tiếp đa giác đáy 2. Tính diện tích đáy: Sử dung các công thức tính diện tích tam giác, tứ giác … Vấn đề 3 : Thể tích khối lăng trụ 1. Công thức tính thể tích khối lăng trụ V = B.h, với B là diện tích đáy, h là chiều cao 2. Một số hình lăng trụ đặc biệt a. Hình lăng trụ đứng: Lăng trụ có cạnh bên vuông với đáy b. Hình lăng trụ đều : Lăng trụ đứng và đáy là đa giác đều c. Hình hộp : Lăng trụ và đáy là hình bình hành d. Hình hộp đứng: Lăng trụ đứng và đáy là hình bình hành Vấn đề 4 : Tỉ số thể tích