Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 7 môn Toán năm 2014 2015 phòng GD ĐT Yên Lập Phú Thọ

Nội dung Đề học sinh giỏi huyện lớp 7 môn Toán năm 2014 2015 phòng GD ĐT Yên Lập Phú Thọ Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 7 môn Toán năm 2014-2015 Đề học sinh giỏi huyện lớp 7 môn Toán năm 2014-2015 Chào các thầy cô giáo và các em học sinh lớp 7! Sytu xin giới thiệu đến quý vị đề học sinh giỏi huyện Toán lớp 7 năm 2014-2015 của phòng GD&ĐT Yên Lập - Phú Thọ. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề học sinh giỏi huyện Toán lớp 7 năm 2014-2015: 1. Ba lớp 7A, 7B, 7C mua gói tăm từ thiện. Ban đầu, họ dự định chia chúng theo tỉ lệ 5:6:7, nhưng sau đó chia lại theo tỉ lệ 4:5:6. Kết quả là một lớp nhận được thêm 4 gói. Hãy tính tổng số gói tăm mà ba lớp đã mua. 2. Trong tam giác xAy có tia phân giác Az. Kẻ đường thẳng BH vuông góc với Ax tại H, BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ đường thẳng CM vuông góc với Ay tại M. Hãy chứng minh: a) K là trung điểm của AC. b) Tam giác KMC là tam giác đều. c) Nếu BK = 2cm, hãy tính độ dài các cạnh AKM. 3. Tìm tất cả các số nguyên dương x, y, z thỏa mãn phương trình x + y + z = xyz. Hy vọng rằng đề học sinh giỏi huyện Toán lớp 7 năm 2014-2015 sẽ giúp các em nâng cao kiến thức và kỹ năng giải toán một cách hiệu quả. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 7 năm 2020 - 2021 trường THCS Kim Đồng - Quảng Nam
Ngày … tháng … năm 2021, trường THCS Kim Đồng, thành phố Hội An, tỉnh Quảng Nam tổ chức kỳ thi khảo sát học sinh giỏi lớp 7 môn Toán năm học 2020 – 2021. Đề thi HSG Toán 7 năm 2020 – 2021 trường THCS Kim Đồng – Quảng Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút.
Đề thi Olimpic Toán 7 năm 2020 - 2021 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olimpic Toán 7 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi Olimpic Toán 7 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội : + Ba thửa ruộng hình chữ nhật A, B, C có cùng diện tích. Chiều rộng của 3 thửa ruộng A, B, C lần lượt tỷ lệ với 3 ; 4 ; 5. Chiều dài của thửa ruộng A nhỏ hơn tổng chiều dài của 2 thửa ruộng B và C là 35m. Tính chiều dài mỗi thửa ruộng. + Cho ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kỳ trên đoạn BM. H, I thứ tự là hình chiếu của B, C trên đường thẳng AD. Chứng minh rằng: a/ BH = AI. b/ BH2 + CI2 có giá trị không đổi. c/ IM là phân giác của DIC. + Cho ABC cân tại A có A 3C. Vẽ tia Cx sao cho CA là tia phân giác của BCx Cx cắt BA tại D. Trong hình vẽ có bao nhiêu tam giác cân? Vì sao?
Đề thi HSG cấp huyện Toán 7 năm 2020 - 2021 phòng GDĐT Lương Tài - Bắc Ninh
Đề thi HSG cấp huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Lương Tài – Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 13 tháng 04 năm 2021.
Đề thi HSG huyện Toán 7 năm 2020 - 2021 phòng GDĐT Hà Trung - Thanh Hóa
Thứ Sáu ngày 09 tháng 04 năm 2021, phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 7 cấp huyện năm học 2020 – 2021. Đề thi HSG huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa : + Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia AC tại F. Chứng minh rằng: a) AE = AF. b) BE = CF. c) 2 AB AC AE. 2) Cho A nằm trong góc xOy nhọn. Tìm điểm B,C lần lượt thuộc Ox, Oy sao cho tam giác ABC có chu vi nhỏ nhất. + Tìm các số x, y, z nguyên dương thỏa mãn: x + y + z = xyz.