Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tháng lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT Ngô Sĩ Liên Bắc Giang

Nội dung Đề thi tháng lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT Ngô Sĩ Liên Bắc Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi tháng lần 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT Ngô Sĩ Liên, tỉnh Bắc Giang; đề thi có đáp án và biểu điểm. Trích dẫn Đề thi tháng lần 1 Toán lớp 11 năm 2023 – 2024 trường THPT Ngô Sĩ Liên – Bắc Giang : + Số giờ có ánh sáng của một thành phố X trong ngày thứ t của năm 2023 được cho bởi một hàm số 5sin 68 9 180 A t π với t 0 365. Vào ngày nào trong năm thì thành phố X có nhiều giờ ánh sáng mặt trời nhất? A. Ngày 07 tháng 6. B. Ngày 08 tháng 6. C. Ngày 09 tháng 6. D. Ngày 06 tháng 6. + Hệ thống đèn lét màu hồng của một công viên ánh sáng được lập trình theo độ cao H(t) của 1 đèn lét màu xanh được trang trí chạy theo kiểu sáng dần theo 1 đường chạy có hình sin là 20 sin 12 t H π (t tính theo đơn vị giây 0 60 t H(t) tính theo đơn vị cm). Đèn màu hồng sẽ sáng khi đèn lét màu xanh ở độ cao thấp nhất hoặc cao nhất. Trong vòng 1 phút đèn hồng sẽ được bật sáng bao nhiêu lần? + Một lớp học có 45 học sinh, trong đó gồm 25 nam và 20 nữ. Giáo viên chủ nhiệm muốn chọn một ban cán sự lớp gồm 4 em. Xác suất để 4 bạn đó có ít nhất một nam và 1 nữ là? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Quảng Ngãi
Nội dung Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Quảng Ngãi Bản PDF Chiều thứ Năm ngày 08 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Ngãi tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp tỉnh lớp 11 môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Quảng Ngãi gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút.
Đề thi chọn HSG tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Quảng Bình (Vòng 1)
Nội dung Đề thi chọn HSG tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Quảng Bình (Vòng 1) Bản PDF Thứ Ba ngày 06 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi tỉnh môn Toán lớp 11 năm học 2020 – 2021 và chọn đội dự tuyển dự thi chọn HSG Quốc gia môn Toán năm học 2021 – 2022 vòng 1. Đề thi chọn HSG tỉnh Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Quảng Bình (Vòng 1) gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề thi chọn HSG lớp 11 môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc
Nội dung Đề thi chọn HSG lớp 11 môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc Bản PDF Thứ Ba ngày 06 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 THPT năm học 2020 – 2021. Đề thi chọn HSG Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh
Nội dung Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 năm học 2020 – 2021 sở GD&ĐT Bắc Ninh; đề thi được biên soạn theo dạng đề tự luận, đề gồm 02 trang với 07 bài toán, thời gian làm bài 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có tâm I(1;4), đỉnh A nằm trên đường thẳng có phương trình 2x + y – 1 = 0, đỉnh C nằm trên đường thẳng có phương trình x – y + 2 = 0. Tìm tọa độ các đỉnh của hình vuông đã cho. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tất cả các cạnh bên đều bằng a. Gọi điểm M thuộc cạnh SD sao cho SD = 3SM, điểm G là trọng tâm tam giác BCD. a) Chứng minh rằng MG song song với mp(SBC). b) Gọi (α) là mặt phẳng chứa MG và song với CD. Xác định và tính diện tích thiết diện của hình chóp với mp (α). c) Xác định điểm P thuộc MA và điểm Q thuộc BD sao cho PQ song song với SC. Tính PQ theo a. + Có bao nhiêu số tự nhiên có 8 chữ số, trong đó có hai chữ số lẻ khác nhau và ba chữ số chẵn khác nhau, mà mỗi chữ số chẵn có mặt đúng hai lần. File WORD (dành cho quý thầy, cô):