Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 7 môn Toán năm 2022 2023 trường THCS Cành Nàng Thanh Hóa

Nội dung Đề khảo sát HSG lớp 7 môn Toán năm 2022 2023 trường THCS Cành Nàng Thanh Hóa Bản PDF - Nội dung bài viết Đề khảo sát Học sinh giỏi Toán lớp 7 năm 2022 - 2023 THCS Cành Nàng Thanh Hóa Đề khảo sát Học sinh giỏi Toán lớp 7 năm 2022 - 2023 THCS Cành Nàng Thanh Hóa Chào mừng đến với đề thi khảo sát chọn đội tuyển học sinh giỏi môn Toán lớp 7 năm học 2022 - 2023 của trường THCS Cành Nàng, Thanh Hóa. Đề thi này sẽ giúp các em học sinh lớp 7 ôn tập và kiểm tra kiến thức của mình để chuẩn bị cho cuộc thi sắc đẹp trong tương lai. Đề thi bao gồm các câu hỏi chất lượng, có đáp án và lời giải chi tiết để giúp các em hiểu rõ từng bước giải của bài toán. Dưới đây là một số ví dụ về các câu hỏi trong đề khảo sát: 1. Số A được chia thành 3 số tỉ lệ theo 2 : 3 : 1. Biết rằng tổng các bình phương của ba số đó bằng 24309. Hãy tìm số A. 2. Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Hãy chứng minh rằng: a) AC = EB và AC // BE. b) I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH // BC (H BC). Biết HBE = 50o; MEB = 25o. Tính số đo HEM và BME. 3. Chứng minh rằng nếu 2n + 1 và 3n + 1 (với n là số nguyên dương) đều là các số chính phương thì n chia hết cho 40. Hy vọng rằng đề thi này sẽ giúp các em học sinh lớp 7 rèn luyện và phát triển kỹ năng Toán của mình. Chúc các em thành công trong việc học tập và thi cử!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2021 - 2022 phòng GDĐT Thọ Xuân - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá; kỳ thi được diễn ra vào Chủ Nhật ngày 27 tháng 03 năm 2022. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2021 – 2022 phòng GD&ĐT Thọ Xuân – Thanh Hoá : + Cho tam giác nhọn ABC có AB < AC < BC. Các tia phân giác của góc A và góc C cắt nhau ở I. Gọi D, E theo thứ tự là hình chiếu của I trên BC, AC. Trên đoạn CD, lấy điểm M sao cho DM = AE. Gọi K là giao điểm của DE và AM. Qua M kẻ đường thẳng song song với AC cắt đoạn DK tại N. a) Chứng minh tam giác CDE cân. b) Chứng minh MN = AE và K là trung điểm của AM. c) Chứng minh ba điểm B, I, K thẳng hàng. + Cho tam giác ABC vuông tại A, có B = 75°. Trên tia đối của tia AB lấy điểm H sao cho BH = 2AC. Tính BHC. + Cho các số nguyên dương a, b, c thỏa mãn: a + b + c = 2022. Chứng tỏ rằng giá trị của biểu thức sau không phải là một số tự nhiên.
Đề kiểm định HSG Toán 7 năm 2021 - 2022 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm định chất lượng học sinh giỏi môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 12 tháng 03 năm 2022. Trích dẫn đề kiểm định HSG Toán 7 năm 2021 – 2022 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Tìm tất cả các số nguyên x; y thỏa mãn. + Chứng minh rằng nếu số tự nhiên abc là số nguyên tố thì b2 – 4ac không là số chính phương. + Cho tam giác ABC vuông cân tại A. Trên nửa mặt phẳng bờ AB có chứa C vẽ tam giác ABD vuông cân tại B. Gọi E là trung điểm của BD. Đường thẳng qua C vuông góc với AE tại M cắt AB tại P. 1. Chứng minh: ABE = CAP. 2. Từ B kẻ đường thẳng vuông góc với AE tại H. a. Chứng minh: MA = MH. b. Chứng minh tam giác HBM vuông cân. 3. Gọi N là trung điểm của CM, đường thẳng BM cắt đường thẳng DN tại K. Tính số đo góc BKD.
Đề học sinh giỏi Toán 7 năm 2021 - 2022 phòng GDĐT Hậu Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi môn Toán 7 năm  học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Hậu Lộc, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Ba ngày 15 tháng 03 năm 2022. Trích dẫn đề học sinh giỏi Toán 7 năm 2021 – 2022 phòng GD&ĐT Hậu Lộc – Thanh Hóa : + Trường THCS A dự định trao quà tết cho học sinh nghèo cho ba khối 6, 7, 8 tỉ lệ với 3, 4, 5. nhưng sau đó vì số học sinh các khối được nhận quà thay đổi nên chia lại tỉ lệ với 2, 3, 4. Như vậy có một khối nhận được nhiều hơn so với dự định là 1 xuất quà. Tính tổng số xuất quà mà nhà trường đã phân chia cho các khối. + Cho x, y là các số nguyên dương thỏa mãn x2 + y2 – x chia hết cho xy. Chứng minh rằng x là số chính phương. + Cho các số không âm a, b, c thỏa mãn : a + 3c = 2021 và a + 2b = 2022. Tìm giá trị lớn nhất của biểu thức P = a + b + c.
Đề học sinh giỏi cấp quận Toán 7 năm 2020 - 2021 phòng GDĐT Ô Môn - Cần Thơ
Đề học sinh giỏi cấp quận Toán 7 năm 2020 – 2021 phòng GD&ĐT Ô Môn – Cần Thơ gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, kỳ thi được diễn ra vào ngày 23 tháng 04 năm 2021.