Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề ôn tập cuối học kì 1 (HK1) lớp 11 môn Toán năm 2021 2022 trường Thuận Thành 1 Bắc Ninh

Nội dung Đề ôn tập cuối học kì 1 (HK1) lớp 11 môn Toán năm 2021 2022 trường Thuận Thành 1 Bắc Ninh Bản PDF Nhằm giúp các em học sinh lớp 11 rèn luyện để chuẩn bị cho kỳ thi kiểm tra chất lượng cuối học kì 1 môn Toán lớp 11 sắp tới, Sytu giới thiệu đến các em đề ôn tập cuối học kỳ 1 Toán lớp 11 năm 2021 – 2022 trường Thuận Thành 1 – Bắc Ninh. Trích dẫn đề ôn tập cuối học kỳ 1 Toán lớp 11 năm 2021 – 2022 trường Thuận Thành 1 – Bắc Ninh : + Phát biểu nào sau đây đúng? A. Hai đường thẳng song song nhau nếu chúng đồng phẳng. B. Hai đường thẳng chéo nhau nếu chúng đồng phẳng. C. Hai đường thẳng cắt nhau nếu chúng không đồng phẳng. D. Hai đường song song nếu chúng đồng phẳng và không có điểm chung. + Một bộ đề thi toán học sinh giỏi lớp 11 mà mỗi đề gồm 5 câu được chọn từ 15 câu dễ, 10 câu trung bình và 5 câu khó. Một đề thi được gọi là TỐT nếu trong đề thi có cả ba câu dễ, trung bình và khó, đồng thời số câu dễ không ít hơn 2 . Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi TỐT. + Cho tập X = {0;1;2 … 8;9}. Hỏi có thể lập được bao nhiêu số tự nhiên có 4 chữ số từ tập X sao cho trong mỗi số đó, chữ số hàng ngàn lớn hơn chữ số hàng trăm, chữ số hàng trăm lớn hơn chữ số hàng chục và chữ số hàng chục lớn hơn chữ số hàng đơn vị. + Cho hình thoi ABCD tâm O. Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng? A. Phép vị tự tâm O, tỷ số k 1 biến tam giác ABD thành tam giác CDB. B. Phép tịnh tiến theo vectơ AD biến tam giác ABD thành tam giác DCB. C. Phép quay tâm O, góc 2 biến tam giác OBC thành tam giác OCD. D. Phép vị tự tâm O, tỷ số k = 1 biến tam giác OBC thành tam giác ODA. + Dùng quy nạp chứng minh mệnh đề chứa biến A n đúng với mọi số tự nhiên n p (p là một số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng?

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An - Hà Nội 2014 - 2015
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An – Hà Nội năm học 2014 – 2015 gồm 5 bài toán, có đáp án và thang điểm. Trích một số bài toán trong đề thi: + Một bình chứa 15 quả cầu, với 4 quả cầu xanh, 5 quả cầu đỏ và 6 quả cầu vàng. Lấy ngẫu nhiên 4 quả cầu. Tính xác suất để trong 4 quả cầu lấy được có đủ ba màu. + Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB song song với CD. Gọi M, N lần lượt là trung điểm của các cạnh SA, SB và P là điểm thuộc cạnh BC sao cho BP = 3PC. 1. Tìm giao tuyến của mặt phẳng (MNP) và mặt phẳng (SCD). 2. Tìm giao điểm của đường thẳng MP và mặt phẳng (SBD).
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An - Hà Nội 2014 - 2015
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An – Hà Nội năm học 2014 – 2015 gồm 5 bài toán, có đáp án và thang điểm Trích một số bài toán trong đề: + Từ các chữ số thuộc tập hợp A = {0,1,2,3,4,5}, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau trong đó nhất thiết phải có mặt chữ số 1 và chữ số 2? + Gieo một con súc sắc 3 lần liên tiếp. Tính xác suất để trong 3 lần gieo có ít nhất 2 lần mặt xuất hiện là 6 chấm. + Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(1; -1) và đường thẳng d: 2x – 3y – 2 = 0. Viết phương trình đường thẳng d ‘ là ảnh của đường thẳng d qua phép đối xứng tâm A. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh SA, CD. 1. Tìm giao tuyến của hai mặt phẳng (EFD) và (SAB). 2. Xác định giao điểm của đường thẳng EF với mặt phẳng (SBD).
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An - Hà Nội 2013 - 2014
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An – Hà Nội năm học 2013 – 2014 gồm 6 bài toán, có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề thi: + Có 4 đồ vật đôi một khác nhau được chia hết cho ba người. Hỏi có bao nhiêu cách chia để mỗi người có ít nhất một đồ vật. + Gieo một con súc sắc (được chế tạo cân đối, đồng chất) hai lần liên tiếp. Tính xác suất để tổng số chấm trên mặt xuất hiện của con súc sắc trong hai lần gieo là một số lẻ. + Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. M và N lần lượt là trung điểm các cạnh SA, CD. 1. Chứng minh MN song song với mặt phẳng (SBC). 2. (a) là mặt phẳng qua M, song song với AN và SC. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (a). 3. Mặt phẳng (a) cắt đường thẳng SB tại I. Tính tỉ số IS/IB
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An - Hà Nội 2013 - 2014
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An – Hà Nội năm học 2013 – 2014 gồm 3 bài toán, có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề: + Một đội văn nghệ của trường có 8 tiết mục múa hát và 4 tiết mục kịch. Hỏi có bao nhiêu cách chọn 5 tiết mục đi dự thi trong đó có ít nhất 2 tiết mục kịch. + Có hai hộp cầu, mỗi hộp chứa 15 quả cầu được đánh số từ 1 đến 15. Lấy ngẫu nhiên từ mỗi hộp một quả cầu. Tính xác suất để tích số trên hai quả cầu thỏa mãn: a. là một số lẻ. b. là một số chia hết cho 6. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trọng tâm của tam giác SAB và SAD. 1. Chứng minh rằng MN song song với mặt phẳng (ABCD). 2. P là trung điểm của BC. Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng (MNP). 3. Gọi Q là giao điểm của SB và mặt phẳng (MNP). Tính tỉ số SQ/SB