Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề thứ tự thực hiện các phép tính, quy tắc chuyển vế Toán 7

Tài liệu gồm 32 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề thứ tự thực hiện các phép tính, quy tắc chuyển vế trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. Trong phần này cần ghi nhớ: * Thứ tự thực hiện phép tính: a. Đối với biểu thức không có dấu ngoặc: Nếu biểu thức chỉ có cộng, trừ hoặc nhân, chia ta thực hiện phép tính theo thứ tự từ trái sang phải. Nếu biểu thức có cả cộng, trừ, nhân, chia hoặc nâng lên lũy thừa ta thực hiện: nâng lên lũy thừa -> nhân, chia -> cộng, trừ. b. Đối với biểu thức có dấu ngoặc: Nếu biểu thức có dấu ngoặc thì thực hện theo thứ tự: { } -> [ ] -> ( ). * Qui tắc chuyển vế: Khi chuyển một số hạng tử từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng tử đó. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép tính. + Thực hiện theo đúng thứ tự thực hiện phép tính, chú ý biểu thức có ngoặc và nâng lên lũy thừa. Dạng 2 . Tính hợp lí. + Chú ý các số hạng đối nhau, cách đặt nhân tử chung, nhóm một cách hợp lí để việc tính toán trở nên đơn giản hơn. Dạng 3 . Tìm giá trị chưa biết. + Sử dụng quy tắc chuyển vế để đổi chỗ các hạng tử ở hai vế của đẳng thức. + Thêm, bớt các hạng tử ở cả hai vế để được đẳng thức. PHẦN III . BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề các góc tạo bởi một đường thẳng cắt hai đường thẳng
Tài liệu gồm 09 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề các góc tạo bởi một đường thẳng cắt hai đường thẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 1: Đường thẳng vuông góc, đường thẳng song song. Mục tiêu : Kiến thức: + Phân biệt được các góc so le trong và góc đồng vị tạo thành bởi một đường thẳng cắt hai đường thẳng. + Nắm vững tính chất về góc so le trong và góc đồng vị. Kĩ năng: + Chỉ ra được các cặp góc so le trong, đồng vị. + Vận dụng được các tính chất về góc. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Xác định các cặp góc so le trong, cặp góc trong cùng phía, cặp góc đồng vị. Dạng 2: Tính góc.
Chuyên đề hai đường thẳng vuông góc
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề hai đường thẳng vuông góc, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 1: Đường thẳng vuông góc, đường thẳng song song. Mục tiêu : Kiến thức: + Phát biểu được định nghĩa hai đường thẳng vuông góc. + Nắm vững cách vẽ và tính chất về hai đường thẳng vuông góc. + Nắm vững định nghĩa đường trung trực của đoạn thẳng. Kĩ năng: + Vẽ được hai đường thẳng vuông góc; đường trung trực của đoạn thẳng. + Chứng minh được một số bài toán vuông góc đơn giản. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Vẽ hình. Dạng 2: Chứng minh hai đường thẳng vuông góc. Dạng 3: Các bài toán vận dụng.
Chuyên đề hai góc đối đỉnh
Tài liệu gồm 09 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề hai góc đối đỉnh, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 1: Đường thẳng vuông góc, đường thẳng song song. Mục tiêu : Kiến thức: + Phát biểu được khái niệm hai góc đối đỉnh. + Nắm vững tính chất cơ bản của hai góc đối đỉnh. Kĩ năng: + Nhận biết được hai góc đối đỉnh. + Vận dụng được tính chất của hai góc đối đỉnh vào tính số đo góc. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Nhận biết hai góc đối đỉnh. Dạng 2: Tính số đo góc. Dạng 3: Chứng minh hai góc đối đỉnh.
Chuyên đề nghiệm của đa thức một biến
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề nghiệm của đa thức một biến, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 4: Biểu thức đại số. Mục tiêu : Kiến thức: + Nắm vững định nghĩa nghiệm của đa thức một biến. + Nhận biết được số nghiệm của đa thức một biến không vượt quá số bậc của đa thức. Kĩ năng: + Kiểm tra được một số có là nghiệm của đa thức một biến hay không. + Tìm được nghiệm của một số đa thức một biến dạng đơn giản. + Biết cách chứng minh đa thức vô nghiệm. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Kiểm tra nghiệm của đa thức. Dạng 2: Tìm nghiệm của đa thức. + Bài toán 1. Tìm nghiệm của đa thức. + Bài toán 2. Chứng minh đa thức không có nghiệm. Dạng 3. Tìm đa thức một biến có nghiệm cho trước.