Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 2 (HK2) lớp 11 môn Toán năm 2021 2022 trường chuyên Vị Thanh Hậu Giang

Nội dung Đề học kì 2 (HK2) lớp 11 môn Toán năm 2021 2022 trường chuyên Vị Thanh Hậu Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 2 môn Toán lớp 11 năm học 2021 – 2022 trường THPT chuyên Vị Thanh, tỉnh Hậu Giang; đề thi mã đề 140 được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận, thời gian làm bài học sinh làm bài kiểm tra là 90 phút (không kể thời gian phát đề). Trích dẫn đề học kỳ 2 Toán lớp 11 năm 2021 – 2022 trường chuyên Vị Thanh – Hậu Giang : + Trong không gian, cho điểm A và và H là điểm thuộc. Mệnh đề nào sau đây đúng? A. Khoảng cách từ điểm A đến là đoạn AH khi điểm H là bất kì trên. B. Khoảng cách từ điểm A đến bằng khoảng cách từ điểm A đến một đường thẳng bất kì trên. C. Khoảng cách từ điểm A đến là lớn nhất so với khoảng cách từ O đến một điểm bất kì của. D. Khoảng cách từ điểm A đến là đoạn AH khi điểm H là hình chiếu của điểm A trên. + Trong không gian, cho đường thẳng d không vuông góc với mặt phẳng, mệnh đề nào dưới đây đúng? A. Góc giữa đường thẳng d và mặt phẳng là góc nhọn hoặc góc vuông. B. Góc giữa đường thẳng d và mặt phẳng là góc giữa đường thẳng d và đường thẳng bất kì trên . C. Góc giữa đường thẳng d và mặt phẳng là góc giữa đường thẳng thẳng d và hình chiếu d’ của nó trên . D. Góc giữa đường thẳng d và mặt phẳng là góc tù. + Một chất điểm chuyển động thẳng, quãng đường đi được xác định bởi phương trình 3 2 s t trong đó t tính bằng giây, quảng đường tính bằng mét. Tính gia tốc tại thời điểm vận tốc triệt tiêu? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THCSTHPT Trí Đức - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THCS&THPT Trí Đức, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Trưng Vương - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Tìm các đạo hàm của các hàm số sau. + Viết phương trình tiếp tuyến với đồ thị (C) của hàm số 3 y x x 3 tại điểm A. + Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B và BC a; SA vuông góc mặt phẳng ABC và SA a 3. a/ Chứng minh: BC SAB. b/ Gọi M là trung điểm của đoạn AC. Chứng minh rằng SBM SAC. c/ Tính góc giữa hai mặt phẳng SBC và SAC. d/ Gọi G là trọng tâm tam giác ABC. Tính khoảng cách từ G đến mặt phẳng SBC.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Trường Chinh - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Cho hình chóp S.ABCD, đáy ABCD là hình vuông tâm O. SB ABCD và SD a AB a 3 BM vuông góc SC tại M. 1) Chứng minh rằng SAD SAB và tam giác SCD là tam giác vuông. 2) Chứng minh rằng AM là đường cao của tam giác SAC. 3) Tính góc giữa hai mặt phẳng (SAD) và (ABCD). + Viết phương trình tiếp tuyến của đồ thị biết tiếp tuyến song song với đường thẳng d y x 4 7. + Gọi 1 2 k k lần lượt là hệ số góc của các tiếp tuyến với đồ thị tại các điểm có hoành độ bằng 1 x và 2 x. Tìm m để 1 2 k k đạt giá trị lớn nhất biết rằng 1 2 x x là hai nghiệm của phương trình 2 2 2 1 0.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường Trương Vĩnh Ký - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký – TP HCM : + Cho hình chóp S.ABCD với đáy ABCD là hình vuông cạnh 2a và có tâm O. Cạnh bên SA a 2 và vuông góc mặt đáy (ABCD). a) Chứng minh: CD SAD. b) Chứng minh hai mặt phẳng (SAC) và (SBD) vuông góc với nhau. c) Tính số đo của góc hợp bởi đường thẳng SO và mặt đáy (ABCD). d) Tính khoảng cách giữa hai đường thẳng SO và BM với M là trung điểm SC. + Cho hàm số 3 2 2 y f x x mx m x m 2 3 có đồ thị là Cm. Gọi 1 k là hệ số góc của tiếp tuyến của đồ thị tại điểm có hoành độ bằng –1, gọi 2 k là hệ số góc của tiếp tuyến của đồ thị tại điểm có hoành độ bằng 0. Tìm m để tổng 1 2 k k đạt giá trị nhỏ nhất. + Viết phương trình tiếp tuyến của đồ thị (C) hàm số 4 2 y x x 3 2 tại điểm thuộc đồ thị có hoành độ 0 x 2.