Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra đội tuyển HSG lần 1 lớp 12 môn Toán năm 2020 2021 trường THPT Vĩnh Lộc Thanh Hóa

Nội dung Đề kiểm tra đội tuyển HSG lần 1 lớp 12 môn Toán năm 2020 2021 trường THPT Vĩnh Lộc Thanh Hóa Bản PDF Ngày 08 tháng 11 năm 2020, trường THPT Vĩnh Lộc (Thanh Hóa) phối hợp cùng trường THPT Thạch Thành (Thanh Hóa) tổ chức kỳ thi kiểm tra kiến thức đội tuyển học sinh giỏi môn Toán lớp 12 THPT năm học 2020 – 2021 lần thứ nhất. Đề kiểm tra đội tuyển HSG lần 1 Toán lớp 12 năm 2020 – 2021 trường THPT Vĩnh Lộc – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra đội tuyển HSG lần 1 Toán lớp 12 năm 2020 – 2021 trường THPT Vĩnh Lộc – Thanh Hóa : + Bốn người khách cùng ra khỏi quán và bỏ quên mũ. Chủ quán không biết rõ chủ của những chiếc mũ đó nên gửi trả cho họ một cách ngẫu nhiên. Tìm xác suất để cả bốn người cùng được trả sai mũ. + Số lượng của một loài vi khuẩn trong phòng thí nghiệm được tính theo công thức S(t) = A.e^rt. Trong đó, A là số lượng vi khuẩn ban đầu, S(t) là số lượng vi khuẩn có được sau thời gian t (phút), r > 0 là tỷ lệ tăng trưởng không đổi theo thời gian và t là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu có 500 con và sau 5 giờ có 1500 con. Hỏi sao bao lâu, kể từ lúc bắt đầu, số lượng vi khuẩn đạt 121500 con? + Bạn An muốn làm một chiếc thùng hình trụ không đáy từ nguyên liệu là mảnh tôn hình tam giác đều ABC có cạnh bằng 90 cm. Bạn cắt mảnh tôn hình chữ nhật MNPQ từ mảnh tôn nguyên liệu (với M, N thuộc cạnh BC; P, Q tương ứng thuộc cạnh AC và AB) để tạo thành hình trụ có chiều cao bằng MQ. Tính thể tích lớn nhất của chiếc thùng mà bạn An có thể làm được. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn đội tuyển tham dự kỳ thi HSG Quốc gia Toán 12 năm 2019 sở GD và ĐT Lạng Sơn
Đề thi chọn đội tuyển tham dự kỳ thi HSG Quốc gia Toán 12 năm 2019 sở GD và ĐT Lạng Sơn gồm 1 trang với 5 bài toán tự luận, thí sinh làm bài trong thời gian 180 phút (không kể thời gian giao đề), kỳ thi được tổ chức ngày 24 tháng 08 năm 2018, đề thi có lời giải chi tiết. Trích dẫn đề thi chọn đội tuyển tham dự kỳ thi HSG Quốc gia Toán 12 năm 2019 sở GD và ĐT Lạng Sơn : + Trên mặt phẳng cho 2n^2 (n ≥ 2) đường thẳng sao cho không có hai đường nào song song và không có ba đường nào đồng quy. Các đường thẳng này chia mặt phẳng ra thành các miền rời nhau. Trong các miền đó, gọi F là tập tất cả các miền đa giác có diện tích hữu hạn. Chứng minh rằng có thể tô n đường thẳng trong số 2n^2 đường thẳng đã cho bằng màu xanh sao cho không có miền nào trong tập F có tất cả các cạnh màu xanh. [ads] + Cho hình chữ nhật ABCD nội tiếp đường tròn (O). Gọi M, N lần lượt là trung điểm các cung nhỏ BC, AD. Gọi I, J lần lượt là trung điểm của OM, ON. Gọi K là điểm đối xứng với O qua M. Chứng minh rằng tứ giác BJDK nội tiếp đường tròn. Gọi P, Q lần lượt là hình chiếu vuông góc của I lên AB, AC. Chứng minh rằng AK ⊥ PQ. + Cho đa thức P(x) có hệ số nguyên, bậc 2 và hệ số bậc 2 bằng 1 thỏa mãn tồn tại đa thức Q(x) có hệ số nguyên sao cho P(x).Q(x) là đa thức có tất cả các hệ số đều là ±1. Chứng minh rằng nếu đa thức P(x) có nghiệm thực x0 thì |x0| < 2. Tìm tất cả các đa thức P(x).
Đề thi chọn đội tuyển môn Toán năm 2018 - 2019 trường THPT chuyên ĐHSP Hà Nội
Đề thi chọn đội tuyển môn Toán năm 2018 – 2019 trường THPT chuyên ĐHSP Hà Nội gồm 2 bài thi, mỗi đề gồm 4 bài toán tự luận, thí sinh có 180 phút để làm bài, kỳ thi diễn ra vào ngày 10/09/2018 và 11/09/2018. Thông qua kỳ thi này, trường THPT chuyên Sư Phạm Hà Nội sẽ tuyển chọn được các em có năng khiếu môn Toán để đưa vào đội tuyển, tiếp tục bồi dưỡng và tạo điều kiện để các em thử sức ở các kỳ thi cấp cao hơn.
Đề thi chọn HSG Toán 12 THPT năm học 2018 - 2019 sở GD và ĐT Hà Nội
Đề thi chọn HSG Toán 12 THPT năm học 2018 – 2019 sở GD và ĐT Hà Nội gồm 1 trang với 5 bài toán tự luận, thí sinh có 180 phút để làm bài, kỳ thi được diễn ra vào ngày 14 tháng 09 năm 2018 nhằm tuyển chọn các em học sinh lớp 12 có năng khiếu môn Toán để bồi dưỡng, đào tạo.
Đề thi giải toán 12 trên máy tính cầm tay cấp tỉnh năm 2017 - 2018 sở GDĐT An Giang
Đề thi giải toán 12 trên máy tính cầm tay cấp tỉnh năm 2017 – 2018 sở GD&ĐT An Giang gồm 10 bài toán, thí sinh làm bài trong khoảng thời gian 120 phút, kỳ thi được tổ chức ngày 31/3/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi giải toán 12 trên máy tính cầm tay cấp tỉnh : + Một vật chuyển động trong 6 giờ với vận tốc v (km/h) phụ thuộc vào thời gian t(h) có đồ thị của vận tốc như hình bên. Trong khoảng thời gian 2 giờ từ khi bắt đầu chuyển động, đồ thị là một phần đường parabol có đỉnh I(3;9) và có trục đối xứng song song với trục tung, khoảng thời gian còn lại đồ thị là một đường thẳng có hệ số góc k = 1/4. Tính quãng đường mà vật di chuyển được trong 6 giờ. [ads] + Một nhà thực vật học đo chiều dài của 100 lá cây và trình bày mẫu số liệu ở bảng bên (đơn vị: cm). Hỏi chiều dài lá cây trung bình là bao nhiêu? Tính phương sai; độ lệch chuẩncủa mẫu số liệu. + Hai khối hình hộp chữ nhật có kích thước 10 x 18 x l được đặt hai bên một khối trụ tròn xoay có chiều dài để ngăn chặn nó tự lăn. Khối thứ nhất chêm bên phải có mặt 10 x l áp sát với mặt đất, khối thứ hai chêm bên trái có mặt 18 x l áp sát với mặt đất. Biết phần dôi ra bên trái lớn hơn phân dôi ra bên phải 4 đơn vị. Tính bán kính của khối trụ.