Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Hồ Nghinh Quảng Nam

Nội dung Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Hồ Nghinh Quảng Nam Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra đánh giá cuối học kì 1 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Hồ Nghinh, tỉnh Quảng Nam; đề thi được biên soạn theo cấu trúc 50% trắc nghiệm + 50% tự luận (theo điểm số), trong đó phần trắc nghiệm gồm 15 câu, phần tự luận gồm 04 câu, thời gian học sinh làm bài 60 phút (không kể thời gian phát đề), đề thi có đáp án và lời giải chi tiết mã đề 101 102 103 104 105 106 107 108. Trích dẫn Đề cuối học kì 1 Toán lớp 10 năm 2022 – 2023 trường THPT Hồ Nghinh – Quảng Nam : + Bạn Hoa thu xếp được không quá 12 giờ để làm hai loại thiệp trưng bày trong dịp cắm trại sắp đến. Loại thiệp hình tam giác cần 2 giờ để làm xong 1 cái, còn loại thiệp hình chữ nhật chỉ cần 1 giờ để làm xong 1 cái. Gọi x, y lần lượt là số thiệp hình tam giác và số thiệp hình chữ nhật bạn Hoa sẽ làm. Hãy lập hệ bất phương trình mô tả điều kiện của x, y và biểu diễn miền nghiệm của hệ bất phương trình đó. + Trong các câu sau, câu nào là mệnh đề? A. Trời lạnh quá! B. Tam Kỳ là thành phố của tỉnh Quảng Nam. C. Bạn thấy học Toán thú vị không? D. Hãy đi nhanh lên! + Cho hình thang vuông ABCD có đường cao AB a 2 các cạnh đáy AD a và BC a 4. a) Hãy phân tích AC theo hai vectơ AB và AD b) Gọi M là điểm trên đoạn AC sao cho AM k AC. Tìm k để BM CD. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường Trương Vĩnh Ký - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường Trương Vĩnh Ký, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường Trương Vĩnh Ký – TP HCM : + Tìm tập xác định của các hàm số sau. + Giải các phương trình và hệ phương trình sau. + Trong mặt phẳng Oxy, cho tam giác ABC với A(1;-2), B(-3;2), C(2;7). a) Tìm tọa độ trọng tâm G của tam giác ABC. b) Chứng tỏ tam giác ABC vuông tại B. c) Tìm tọa độ điểm D để ABCD là hình chữ nhật. d) Tìm tọa độ điểm E biết tam giác BCE có độ dài cạnh BE = 1 và độ dài cạnh CE là một số nguyên.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Linh Trung - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Linh Trung, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Linh Trung – TP HCM : + Một gia đình có bốn người lớn và ba trẻ em mua vé xem xiếc hết 370.000 đồng. Một gia đình khác có hai người lớn và hai trẻ em cũng mua vé xem xiếc tại rạp đó hết 200.000 đồng. Hỏi giá vé người lớn và giá vé trẻ em là bao nhiêu? + Một quả bóng chày được ném từ một điểm M có độ cao 45m so với mặt đất và vận tốc ban đầu là v lên trên và quỹ đạo bay là một Parabol với độ cao so mặt đất phụ thuộc theo thời gian đo được theo công thức h(t) (trong đó: độ cao h(t) có đơn vị là mét (m) và thời gian t có đơn vị là giây (s)). 1) Tính độ cao của quả bóng so với mặt đất sau 3 giây chuyển động. 2) Tính độ cao lớn nhất quả bóng đạt được so với mặt đất. + Tìm tập xác định hàm số.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Du - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Du, thành phố Hồ Chí Minh.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường Hoàng Hoa Thám - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Hoàng Hoa Thám, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Hoàng Hoa Thám – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(2;-1), B(3;2), C(0;3). a) Tìm tọa độ điểm N sao cho ABCN là hình bình hành. b) Tìm tọa độ điểm H là giao điểm của đường thẳng AB và trục tung. + Lập bảng biến thiên và vẽ đồ thị (P) của hàm số y = x2 + 4x. + Cho 3tanx + 5 = 0 với x là góc tù. Tính giá trị biểu thức P = 4cosx/(sinx)^2.