Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học Toán 9 - Nguyễn Chín Em (Tập 2)

Tài liệu gồm 285 trang được biên soạn bởi thầy Nguyễn Chín Em, tuyển tập lý thuyết, dạng toán, phương pháp giải và bài tập các chủ đề Toán 9 giai đoạn học kỳ 2. Khái quát nội dung tài liệu tự học Toán 9 – Nguyễn Chín Em (Tập 2): PHẦN I . ĐẠI SỐ. CHƯƠNG 3 . HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. 1 Phương trình bậc nhất hai ẩn số. 2 Hệ hai phương trình bậc nhất hai ẩn. 3 Giải hệ phương trình bằng phương pháp thế. + Dạng 1. Giải hệ phương trình. + Dạng 2. Sử dụng hệ phương trình giải toán. 4 Giải hệ phương trình bằng phương pháp cộng. + Dạng 1. Giải hệ phương trình. + Dạng 2. Sử dụng hệ phương trình giải toán. 5 Giải bài toán bằng cách lập hệ phương trình. + Dạng 1. Bài toán chuyển động. + Dạng 2. Bài toán vòi nước. 6 Phương trình quy về phương trình bậc hai. + Dạng 1. Giải phương trình tích. + Dạng 2. Sử dụng ẩn phụ chuyển phương trình về phương trình bậc hai. + Dạng 3. Giải phương trình chứa ẩn ở mẫu. + Dạng 4. Giải phương trình bậc ba. + Dạng 5. Giải phương trình trùng phương. + Dạng 6. Giải phương trình hồi quy và phản hồi quy. + Dạng 7. Phương trình dạng (x + a)(x + b)(x + c)(x + d) = m với a + b = c + d. + Dạng 8. Phương trình dạng (x + a)^4 + (x + b)^4 = c. + Dạng 9. Sử dụng phương trình bậc hai giải phương trình chứa dấu giá trị tuyệt đối. + Dạng 10. Sử dụng phương trình bậc hai giải phương trình chứa căn thức. 7 Giải bài toán bằng cách lập phương trình. + Dạng 1. Bài toán chuyển động. + Dạng 2. Bài toán về số và chữ số. + Dạng 3. Bài toán vòi nước. + Dạng 4. Bài toán có nội dung hình học. + Dạng 5. Bài toán về phần trăm – năng suất. PHẦN II . HÌNH HỌC. CHƯƠNG 3 . GÓC VỚI ĐƯỜNG TRÒN. 1 Góc ở tâm – Số đo cung. 2 Liên hệ giữa cung và dây. 3 Góc nội tiếp. + Dạng 1. Giải bài toán định lượng. + Dạng 2. Giải bài toán định tính. 4 Góc tạo bởi tiếp tuyến và dây cung. + Dạng 1. Giải bài toán định tính. + Dạng 2. Giải bài toán định lượng. 5 Góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn. 6 Cung chứa góc. + Dạng 1. Tìm quỹ tích các điểm M tạo thành với hai mút của đoạn thẳng AB cho trước một góc AMB có số đo không đổi bằng α (0◦ < α < 180◦). + Dạng 2. Dựng cung chứa góc α (0◦ < α < 180◦) trên đoạn thẳng AB = a cho trước. + Dạng 3. Sử dụng quỹ tích cung chứa góc chứng minh nhiều điểm cùng nằm trên một đường tròn. + Dạng 4. Toán tổng hợp. 7 Tứ giác nội tiếp. + Dạng 1. Chứng minh tứ giác nội tiếp đường tròn. + Dạng 2. Sử dụng tứ giác nội tiếp giải các bài toán hình học. 8 Đường tròn ngoại tiếp – Đường tròn nội tiếp. 9 Độ dài đường tròn, cung tròn. 10 Diện tích hình tròn, hình quạt tròn. 11 Ôn tập chương III. CHƯƠNG 4 . HÌNH CẦU, HÌNH TRỤ, HÌNH NÓN. 1 Hình trụ. Diện tích xung quanh và thể tích hình trụ. 2 Hình nón – Hình nón cụt – Diện tích xung quanh và thể tích của hình nón, hình nón cụt. 3 Hình cầu – Diện tích mặt cầu và thể tích hình cầu. 4 Ôn tập chương IV.

Nguồn: toanmath.com

Đọc Sách

Tài liệu Toán 9 chủ đề hệ thức Vi-ét và ứng dụng
Tài liệu gồm 36 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ thức Vi-ét và ứng dụng trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Hệ thức Viét. 2. Ứng dụng của hệ thức Viét. B. Bài tập. Dạng 1: Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các nghiệm. Dạng 2: Giải phương trình bằng phương pháp nhẩm nghiệm. Dạng 3: Tìm hai số khi biết tổng và tích. Dạng 4: Xét dấu các nghiệm của phương trình bậc hai. Dạng 5: Xác định điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn hệ thức cho trước. Dạng 6: Tìm GTLN – GTNN của biểu thức. Dạng 7: Tìm hệ thức giữa hai nghiệm của phương trình không phụ thuộc vào tham số. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề phương trình quy về phương trình bậc hai
Tài liệu gồm 27 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề phương trình quy về phương trình bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Phương trình trùng phương: Phương trình trùng phương là phương trình có dạng: 4 2 ax bx c a 0. Cách giải: Đặt ẩn phụ 2 t xt 0 để đưa phương trình về phương trình bậc hai: 2 at bt c a 0. 2. Phương trình chứa ẩn ở mẫu thức. Để giải phương trình chứa ẩn ở mẫu thức ta làm theo các bước sau: + Bước 1: Tìm điều kiện xác định của ẩn của phương trình. + Bước 2: Quy đồng mẫu thức hai vế rồi khử mẫu. + Bước 3: Giải phương trình vừa nhận được ở bước 2. + Bước 4: So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận. 3. Phương trình đưa về dạng tích. Để giải phương trình đưa về dạng tích, ta có thể thực hiện theo các bước sau: + Bước 1: Phân tích vế trái thành nhân tử, vế phải bằng 0. + Bước 2: Xét từng nhân tử bằng 0 để tìm nghiệm. B. Bài tập và các dạng toán. I. Phương trình không chứa tham số. + Dạng 1: Giải phương trình trùng phương. + Dạng 2: Phương trình chứa ẩn ở mẫu thức. + Dạng 3: Phương trình đưa về dạng tích. + Dạng 4: Giải bằng phương pháp đặt ẩn phụ. + Dạng 5: Phương trình chứa căn thức. + Dạng 6: Một số dạng khác. II. Phương trình chứa tham số. + Dạng 1: Phương trình bậc ba đưa được về dạng tích 2 x k ax bx c 0. + Dạng 2: Phương trình trùng phương. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề bài toán về đường thẳng và parabol
Tài liệu gồm 08 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề bài toán về đường thẳng và parabol trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. Cho đường thẳng d y mx n và Parabol P y ax a 0. Khi đó số giao điểm của d và P bằng đúng số nghiệm của phương trình hoành độ giao điểm 2 ax mx n. Ta có bảng sau: Số giao điểm của d và (P) Biệt thức ∆ của phương trình hoành độ giao điểm của d và (P) Vị trí tương đối của d và (P). 0 ∆ 0 d không cắt P. 1 ∆ 0 d tiếp xúc với P. 2 ∆ 0 d cắt P tại hai điểm phân biệt. B. Bài tập.
Tài liệu Toán 9 chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn
Tài liệu gồm 10 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Góc có đỉnh bên trong đường tròn. Góc BIC nằm bên trong đường tròn (O) được gọi là góc có đỉnh ở bên trong đường tròn. Định lí 1: Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. 2. Góc có đỉnh bên ngoài đường tròn. Các góc có đỉnh nằm bên ngoài đường tròn, các cạnh đều có điểm chung với đường được gọi là góc có đỉnh ở bên ngoài đường tròn. Định lí 2: Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. B. Bài tập. Dạng 1 : Chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau. Cách giải: Sử dụng hai định lí về số đo của góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn. Dạng 2 : Chứng minh hai đường thẳng song song hoặc vuông góc. Chứng minh đẳng thức cho trước. Cách giải: Áp dụng hai định lí về số đo góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn để có được các góc bằng nhau, cạnh bằng nhau. Từ đó suy ra điều cần chứng minh.