Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề các phép tính về số tự nhiên

Nội dung Chuyên đề các phép tính về số tự nhiên Bản PDF - Nội dung bài viết Chuyên đề các phép tính về số tự nhiênDạng 1: Thực hiện phép tínhDạng 2: Tìm xDạng 3: Bài toán có lời vănDạng 4: Toán về phép chia có dưDạng 5: Tìm số chưa biết trong một phép tính Chuyên đề các phép tính về số tự nhiên Tài liệu này bao gồm 26 trang, tập trung vào việc giải thích lý thuyết cơ bản và cung cấp các dạng toán và bài tập liên quan đến các phép tính về số tự nhiên. Đây là tài liệu hữu ích để hỗ trợ học sinh lớp 6 trong quá trình học tập môn Toán, đặc biệt là phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu của tài liệu này là giúp học sinh: Nhận biết được điều kiện để thực hiện phép trừ và phép chia trong tập số tự nhiên. Hiểu các tính chất cơ bản của phép cộng và phép nhân. Nắm được quan hệ giữa các số trong phép cộng, phép trừ, phép nhân, phép chia hết và phép chia có dư. Trong tài liệu, các dạng bài tập được trình bày như sau: Dạng 1: Thực hiện phép tính Để thực hiện phép tính một cách nhanh chóng, hợp lí, học sinh cần áp dụng các tính chất kết hợp của phép cộng và phép nhân, cũng như biết cách chia một tổng cho một số. Dạng 2: Tìm x Trong dạng này, học sinh cần xác định vai trò của số đã biết và số chưa biết trong phép tính, sau đó áp dụng các công thức tương ứng. Dạng 3: Bài toán có lời văn Đây là dạng bài tập giúp học sinh áp dụng kiến thức về các phép toán vào việc giải quyết các bài toán thực tế. Dạng 4: Toán về phép chia có dư Trong phép chia có dư, học sinh cần nắm rõ công thức tính toán để giải quyết bài toán một cách chính xác. Dạng 5: Tìm số chưa biết trong một phép tính Đối với các phép cộng, trừ, nhân và chia, học sinh cần thực hiện các bước tính toán theo cột và từ phải sang trái, đồng thời lưu ý những trường hợp đặc biệt. Qua việc thực hành các bài tập trong tài liệu này, học sinh sẽ nâng cao kỹ năng vận dụng kiến thức về phép tính về số tự nhiên và tự tin hơn trong việc giải quyết các bài toán liên quan.

Nguồn: sytu.vn

Đọc Sách

Tài liệu dạy thêm - học thêm chuyên đề bội và ước của một số nguyên
Tài liệu gồm 14 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề bội và ước của một số nguyên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. I. TÓM TẮT LÝ THUYẾT. II. CÁC DẠNG BÀI. Dạng 1 . Tìm bội và ước của số nguyên. – Tập hợp các bội của số nguyên a có vô số phần tử và bằng k a k Z. – Tập hợp các ước số của số nguyên a a 0 luôn là hữu hạn. Cách tìm: Trước hết ta tìm các ước số nguyên dương của phần số tự nhiên a (làm như trong tập số tự nhiên), chẳng hạn là p q r. Khi đó p q r cũng là ước số của a. Do đó các ước của a là p q r. Như vậy số các ước nguyên của a gấp đôi số các ước tự nhiên của nó. Số ước nguyên dương của số m n t a x y z là m 1 n 1. Dạng 2 . Vận dụng tính chất chia hết của số nguyên. Để chứng minh một biểu thức A chia hết cho số nguyên a. – Nếu A có dạng tích m n p thì cần chỉ ra m (hoặc n hoặc p) chia hết cho a. Hoặc m chia hết cho 1 a n chia hết cho 2 a p chia hết cho 3 a trong đó 1 2 3 a a a a. – Nếu A có dạng tổng m + n + p thì cần chỉ ra m n p cùng chia hết cho a hoặc tổng các số dư khi chia m n p cho a phải chia hết cho a. – Nếu A có dạng hiệu m – n thì cần chỉ ra m n chia cho a có cùng số dư. Vận dụng tính chất chia hết để làm bài toán về tìm điều kiện để một biểu thức thỏa mãn điều kiện cho hết. Dạng 3 . Tìm số nguyên x thỏa mãn điều kiện về chia hết. Áp dụng tính chất: Nếu a + b chia hết cho c và a chia hết cho c thì b chia hết cho c.
Tài liệu dạy thêm - học thêm chuyên đề phép nhân số nguyên
Tài liệu gồm 16 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề phép nhân số nguyên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. NHÂN HAI SỐ NGUYÊN PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI TẬP. Dạng 1 . Thực hiện phép tính. Áp dụng quy tắc nhân hai số nguyên cùng dấu, nhân hai số nguyên khác dấu. Dạng 2 . So sánh. So sánh với số 0: Tích hai số nguyên khác dấu luôn nhỏ hơn 0. Tích hai số nguyên cùng dấu luôn lớn hơn 0. So sánh một tích với một số: Để so sánh một tích với một số, ta áp dụng quy tắc nhân hai số nguyên cùng dấu, nhân hai số nguyên khác dấu, sau đó so sánh kết quả với số theo yêu cầu đề bài. So sánh hai biểu thức với nhau: Áp dụng quy tắc nhân hai số nguyên cùng dấu, nhân hai số nguyên khác dấu, các quy tắc dấu ngoặc, quy tắc chuyển vế sau đó so sánh hai kết quả với nhau. Dạng 3 . Tìm số nguyên chưa biết thỏa mãn điều kiện cho trước. – Áp dụng quy tắc chuyển vế đưa các số hạng chứa x về một bên, các số hạng không chứa x về một bên rồi sau đó tìm số chưa biết theo quy tắc nhân hai số nguyên khác dấu, quy tắc nhân hai số nguyên cùng dấu. – Vận dụng kiến thức. TÍNH CHẤT CỦA PHÉP NHÂN SỐ NGUYÊN PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI TẬP. Dạng 1 . Thực hiện phép tính. Vận dụng các tính chất của phép nhân để tính chất giáo hoán, kết hợp và tính chất phân phối của phép nhân với phép cộng để tính toán được thuận lợi, dễ dàng. Dạng 2 . Tính giá trị của biểu thức. – Rút gọn biểu thức (nếu có thể). – Thay giá trị của chữ vào biểu thức rồi thực hiện phép tính. Dạng 3 . So sánh. C1: Xét dấu của các tích rồi so sánh. C2: Rút gọn biểu thức rồi so sánh kết quả.
Tài liệu dạy thêm - học thêm chuyên đề phép cộng và phép trừ số nguyên
Tài liệu gồm 13 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề phép cộng và phép trừ số nguyên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHÉP CỘNG SỐ NGUYÊN PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép cộng. * Để thực hiện phép cộng các số nguyên, ta cần áp dụng quy tắc cộng hai số nguyên. * Tổng của một số với một số dương thì lớn hơn chính nó. * Tổng của một số với một số âm thì nhỏ hơn chính nó. * Tổng của một số với 0 thì bằng chính nó. * Tổng của hai số đối nhau bằng 0. Dạng 2 . Vận dụng tính chất của phép cộng các số nguyên tính tổng đại số. Muốn tính nhanh kết quả của tổng đại số, cần vận dụng các tính chất của phép cộng các số nguyên để thực hiện phép tính một cách hợp lí. Có thể cộng các số nguyên âm với nhau, các số nguyên dương với nhau, rồi tính tổng chung. Nếu trong tổng có hai số nguyên đối nhau thì kết hợp chúng với nhau. PHÉP TRỪ SỐ NGUYÊN & QUY TẮC DẤU NGOẶC PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép trừ. * Để thực hiện phép trừ hai số nguyên, ta biến đổi phép trừ thành phép cộng với số đối rồi thực hiện quy tắc cộng hai số nguyên đã biết. * Hai số a và a là hai số đối của nhau. Dạng 2 . Quy tắc dấu ngoặc. Để tính nhanh các tổng, ta áp dụng quy tắc dấu ngoặc để bỏ dấu ngoặc, nếu đằng trước ngoặc có dấu “+” khi bỏ ngoặc giữ nguyên dấu các số hạng bên trong ngoặc, nếu đằng trước ngoặc có dấu “–“ khi bỏ dấu ngoặc phải đổi dấu các số hạng trong ngoặc. Sau đó áp dụng các tính chất giao hoán, kết hợp trong tổng đại số. Chú ý kết hợp các cặp số hạng đối nhau hoặc các cặp số hạng có kết quả tròn chục, tròn trăm. Hoặc ta cần nhóm các số hạng vào trong ngoặc: Nếu đặt dấu “–” đằng trước dấu ngoặc thì phải đổi dấu các số hạng đó, còn nếu đặt dấu “+” đằng trước dấu ngoặc thì vẫn giữ nguyên dấu các số hạng đó. Dạng 3 . Toán tìm x. * Đối với dạng toán tìm x trong một đẳng thức, ta cần vận dụng quy tắc dấu ngoặc (nếu có) và một số tính chất để rút gọn mỗi vế của đẳng thức. Cuối cùng vận dụng quan hệ giữa các số có phép tính (nếu có) để tìm x.
Tài liệu dạy thêm - học thêm chuyên đề tập hợp các số nguyên
Tài liệu gồm 12 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề tập hợp các số nguyên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÝ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Điền kí hiệu thích hợp vào chỗ trống. – Dạng điền kí hiệu. – Tập hợp số tự nhiên. – Tập hợp số nguyên gồm các số nguyên âm, số 0 và số nguyên dương. – A B nếu mọi phần tử của A đều thuộc B. – Dạng điền Đ (đúng) hoặc chữ S (sai); đánh dấu “x” vào ô đúng hoặc sai. Dạng 2 . Biểu diễn số nguyên trên trục số. Trục số là hình biểu diễn gồm một đường thẳng nằm ngang hoặc thẳng đứng, một đầu gắn với mũi tên (biểu thị chiều dương) được chia thành các khoảng bằng nhau (được gọi là đơn vị) và ghi kèm các số tương ứng. Điểm 0 (biểu diễn số 0) được gọi là điểm gốc của trục số (thường đặt tên là O). Điểm biểu diễn số a trên trục số gọi là điểm a. Với trục số nằm ngang: Chiều từ trái sang phải là chiều dương, với hai điểm a b trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b. Với trục số thẳng đứng: Chiều từ dưới lên trên là chiều dương, với hai điểm a b trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b. Dạng 3 . So sánh hai hay nhiều số nguyên. Cách 1 : Biểu diễn các số nguyên cần so sánh trên trục số. Giá trị các số nguyên tăng dần từ trái sang phải (điểm a nằm bên trái điểm b thì số nguyên a bé hơn số nguyên b). Cách 2 : Căn cứ vào các nhận xét sau: Số nguyên dương lớn hơn 0. Số nguyên âm nhỏ hơn 0. Số nguyên dương lớn hơn số nguyên âm. Trong hai số nguyên dương, số nào có giá trị tuyệt đối lớn hơn thì số ấy lớn hơn. Trong hai số nguyên âm, số nào có giá trị tuyệt đối nhỏ hơn thì số ấy lớn hơn. Kiến thức về giá trị tuyệt đối: – Giá trị tuyệt đối của một số tự nhiên là chính nó. – Giá trị tuyệt đối của một số nguyên âm là số đối của nó. – Giá trị tuyệt đối của một số nguyên là một số tự nhiên. – Hai số nguyên đối nhau có cùng một giá trị tuyệt đối. Dạng 4 . Viết tập hợp số. Tên tập hợp được viết bằng chữ cái in hoa như: A, B, C …. Hai cách viết tập hợp số: Cách 1: Liệt kê các phần tử. Cách 2: Chỉ ra các tính chất đặc trưng. Chú ý: + Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, ngăn cách nhau bởi dấu “;” (nếu có phần tử số) hoặc dấu “,” nếu không có phần tử số. + Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý. Dạng 5 . Sử dụng số nguyên âm trong thực tế. Số dương và số âm được dùng để biểu thị các đại lượng đối lập nhau hoặc có hướng ngược nhau. Số âm thường dùng để chỉ: – Nhiệt độ dưới 0C. – Độ cao dưới mực nước biển. – Số tiền còn nợ. – Số tiền lỗ. – Độ cận thị. – Thời gian trước Công Nguyên.