Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Thái Nguyên

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Thái Nguyên Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm 2019-2020 môn Toán sở GDĐT Thái Nguyên Đề thi tuyển sinh THPT năm 2019-2020 môn Toán sở GDĐT Thái Nguyên Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Thái Nguyên tổ chức đóng vai trò quan trọng trong hành trình học tập của học sinh tại tỉnh này. Đây là cơ hội để các em chứng minh năng lực và xác định tương lai học vấn của mình, là bước đệm quan trọng tiếp theo sau khi tốt nghiệp khối Trung học Cơ sở. Môn thi Toán là một trong những môn rất quan trọng và bắt buộc trong kỳ thi này. Nội dung đề tuyển sinh vào lớp 10 hệ THPT năm học 2019-2020 môn Toán sở GD&ĐT Thái Nguyên năm nay gồm các câu hỏi khá phức tạp và đa dạng, đòi hỏi sự chuẩn bị kỹ lưỡng và kiến thức sâu. Dưới đây là một số câu hỏi đáng chú ý trong đề thi: - Câu 1: Trong tam giác ABC, điểm P, Q thuộc hai cung AB, AC sao cho BP vuông góc với AC, CQ vuông góc với AB. Chứng minh một số mẹo hay về tỷ lệ trong tam giác. - Câu 2: Với tình huống hàng năm thu hoạch lúa tại một địa phương, học sinh cần áp dụng kiến thức về phương trình để giải quyết vấn đề về sản lượng và năng suất. - Câu 3: Học sinh sẽ phải làm quen với việc xác định hệ số a, b trong hàm số y=ax+b và biết cách xác định hàm số song song, cắt trục tung của đồ thị hàm số. Với những câu hỏi như vậy, đề thi tuyển sinh Toán sở GD&ĐT Thái Nguyên năm nay đòi hỏi học sinh không chỉ biết lý thuyết mà còn phải áp dụng linh hoạt, tự tin trong việc giải quyết vấn đề. Chúc các em quyết tâm và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề Toán tuyển sinh lớp 10 THPT chuyên năm 2019 - 2020 sở GDĐT Hà Nam (Đề chung)
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề Toán tuyển sinh lớp 10 THPT chuyên năm học 2019 – 2020 sở Giáo dục và Đào tạo Hà Nam (Đề chung – Vòng 1), đề thi được dành cho toàn bộ các thí sinh tham dự kỳ thi, đề gồm 5 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 THPT chuyên năm 2019 – 2020 sở GD&ĐT Hà Nam (Đề chung) : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x^2 và đường thẳng (d) có phương trình y = mx + 3 (với m là tham số). 1. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A và B. 2. Gọi x1, x2 lần lượt là hoành độ của A và B. Tính tích các giá trị của m để 2×1 + x2 = 1. [ads] + Cho đường tròn (O;R) và điểm A sao cho OA = 3R. Qua A kẻ hai tiếp tuyến AB và AC của đường tròn (O), với B và C là hai tiếp điểm. Kẻ cát tuyến AMN của đường tròn (O) (M nằm giữa hai điểm A và N). Gọi H là giao điểm của OA và BC. 1. Chứng minh tứ giác ABOC nội tiếp. 2. Chứng minh AM.AN = AH.AO. 3. Chứng minh HB là đường phân giác của góc MHN. 4. Gọi I, K lần lượt là hình chiếu của M trên AB và AC. Tìm giá trị lớn nhất của MI.MK khi cát tuyến AMN quay quanh A.
Đề Toán tuyển sinh lớp 10 năm 2019 - 2020 sở GDĐT thành phố Hồ Chí Minh
Sáng thứ Hai ngày 03 tháng 06 năm 2019, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh (TP HCM) tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2019 – 2020. Đề Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh gồm 2 trang với 8 bài toán dạng tự luận, thời gian học sinh làm bài 120 phút, đáp án và lời giải chi tiết đề Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh sẽ được THCS. cập nhật trong thời gian sớm nhất có thể. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh : + Quy tắc sau đây cho ta biết được ngày n, tháng t, năm 2019 là ngày thứ mấy trong tuần. Đầu tiên, ta tính giá trị của biểu thức T = n + H, ở đây H được xác định bởi bảng sau. Sau đó, lấy T chia cho 7 ta được số dư r (0 < r < 6). Nếu r = 0 thì ngày đó là ngày thứ Bảy. Nếu r = 1 thì ngày đó là ngày Chủ Nhật. Nếu r = 2 thì ngày đó là ngày thứ Hai. Nếu r = 3 thì ngày đó là ngày thứ Ba. ………… Nếu r = 6 thì ngày đó là ngày thứ Sáu. Ví dụ: Ngày 31/12/2019 có n = 31; t = 12; H = 0 ⇒ T = 31 + 0 = 31; số 31 chia cho 7 có số dư là 3, nên ngày đó là thứ Ba. [ads] a) Em hãy sử dụng quy tắc trên để xác định các ngày 02/9/2019 và 20/11/2019 là thứ mấy? b) Bạn Hằng tổ chức sinh nhật của mình trong tháng 10/2019. Hỏi sinh nhật của bạn Hằng là ngày mấy? Biết rằng ngày sinh nhật của Hằng là một bội số của 3 và là thứ Hai. + Tại bề mặt đại dương, áp suất nước bằng áp suất khí quyển và là 1 atm (atmosphere). Bên dưới mặt nước, áp suất nước tăng thêm 1 atm cho mỗi 10 mét sâu xuống. Biết rằng mối liên hệ giữa áp suất y (atm) và độ sâu 1 (m) dưới mặt nước là một hàm số bậc nhất có dạng y = ax + b. a) Xác định các hệ số a và b. b) Một người thợ lặn đang ở độ sâu bao nhiêu nếu người ấy chịu một áp suất là 2,85 atm? + Một nhóm gồm 31 bạn học sinh tổ chức một chuyến đi du lịch (chi phí chuyến đi được chia đều cho mỗi bạn tham gia). Sau khi đã hợp đồng xong, vào giờ chót có 3 bạn bận việc đột xuất không đi được nên họ không đóng tiền. Cả nhóm thống nhất mỗi bạn còn lại sẽ đóng thêm 18 000 đồng so với dự kiến ban đầu để bù lại cho 3 bạn không tham gia. Hỏi tổng chi phí chuyến đi là bao nhiêu?
Đề Toán tuyển sinh vào lớp 10 năm học 2019 - 2020 sở GDĐT Tây Ninh
Thứ Bảy ngày 01 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Tây Ninh tổ chức kỳ thi Toán tuyển sinh vào lớp 10 (không chuyên) năm học 2019 – 2020. Đề Toán tuyển sinh vào lớp 10 năm học 2019 – 2020 sở GD&ĐT Tây Ninh là đề chung được sử dụng cho tất cả các thí sinh (vòng 1 / vòng điều kiện), đề thi gồm 1 trang với 10 bài toán dạng tự luận, mỗi bài tương ứng với 1 điểm, học sinh làm bài trong khoảng thời gian 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề Toán tuyển sinh vào lớp 10 năm học 2019 – 2020 sở GD&ĐT Tây Ninh : + Cho tam giác ABC có ba góc nhọn và nội tiếp đường tròn tâm O. Gọi I là trung điểm AB, đường thẳng qua I vuông góc AO và cắt cạnh AC tại J. Chứng minh bốn điểm B, C, J và I cùng thuộc một đường tròn. [ads] + Cho đường tròn (C) có tâm I và có bàn kính R = 2a. Xét điểm M thay đổi sao cho IM = a. Hai dây AC, BD đi qua điểm M và vuông góc với nhau (A, B, C, D thuộc (C)). Tìm giá trị lớn nhất của diện tích tứ giác ABCD. + Cho tam giác ABC vuông cân tại A có đường trung tuyến BM (M thuộc cạnh AC). Biết AB = 2a. Tính theo a độ dài AC, AM và BM.
Đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GDĐT Bắc Giang
Sáng Chủ Nhật ngày 02 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức kỳ thi Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm học 2019 – 2020. Đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Bắc Giang được biên soạn theo dạng đề kết hợp trắc nghiệm khách quan và tự luận, phần trắc nghiệm gồm 20 câu, phần tự luận gồm 5 câu, thời gian học sinh làm bài 120 phút (không tính thời gian phát đề). Trích dẫn đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Bắc Giang : + Đầu năm học, Hội khuyến học của một tỉnh tặng cho trường A tổng số 245 quyển sách gồm sách Toán và sách Ngữ văn. Nhà trường đã dùng 1/2 số sách Toán và 2/3 số sách Ngữ văn đó để phát cho các bạn học sinh có hoàn cảnh khó khăn. Biết rằng mỗi bạn nhận được một quyển sách Toán và một quyển sách Ngữ văn. Hỏi Hội khuyến học tỉnh đã tặng cho trường A mỗi loại sách bao nhiêu quyền? [ads] + Cho tam giác ABC nội tiếp đường tròn (O) đường kính AC (BA < BC). Trên đoạn thẳng AC lấy điểm I bất kỳ (I khác C). Đường thẳng BI cắt đường tròn (O) tại điểm thứ hai là D. Kẻ CH vuông góc với BD (H thuộc BD), DK vuông góc với AC (K thuộc AC). a) Chứng minh rằng tứ giác DHKC là tứ giác nội tiếp. b) Cho độ dài đoạn thẳng AC là 4cm và ABD = 60°. Tính diện tích tam giác ACD. c) Đường thẳng đi qua K song song với BC cắt đường thẳng BD tại E. Chứng minh rằng khi I thay đổi trên đoạn thẳng OC (I khác C) thì điểm E luôn thuộc một đường tròn cố định. + Cho x, y là các số thực thỏa mãn điều kiện x^2 + y^2 = 1. Tìm giá trị nhỏ nhất của biểu thức P = (3 – x)(3 – y).