Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi lớp 12 môn Toán THPT năm 2020 2021 sở GD ĐT Hà Nội

Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán THPT năm 2020 2021 sở GD ĐT Hà Nội Bản PDF Sáng thứ Ba ngày 29 tháng 09 năm 2020, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp thành phố lớp 12 THPT năm học 2020 – 2021 môn thi Toán. Đề thi chọn học sinh giỏi Toán lớp 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Nội gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút; qua khảo sát ý kiến của một số thầy, cô giáo và các em học sinh, đề thi năm nay không quá khó (so với các năm học trước). Trích dẫn đề thi chọn học sinh giỏi Toán lớp 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Nội : + Cho hàm số y = x^3 – 3/2mx^2 + m^3 có đồ thị (C). Tìm tất cả các giá trị của tham số m để đồ thị hàm số có hai điểm cực trị A, B sao cho tam giác ABO có diện tích bằng 32 (với O là gốc tọa độ). + Cho đa giác đều 30 đỉnh A1, A2 … A30. Hỏi có bao nhiêu tam giác có 3 đỉnh là 3 điểm trong 30 điểm A1, A2 … A30 đồng thời không có cạnh nào là cạnh của đa giác. + Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 1. Gọi M, N là hai điểm thay đổi lần lượt trên các cạnh AB, A’D’ sao cho đường thẳng MN tạo với mặt phẳng (ABCD) một góc bằng 60 độ. 1) Tính độ dài đoạn thẳng MN. 2) Tìm giá trị lớn nhất của khoảng cách giữa hai đường thẳng MN và CC’.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Phú Yên
Ngày 06 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Phú Yên tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2020 – 2021. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Phú Yên; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Phú Yên : + Cho điểm M tùy ý nằm bên trong tam giác ABC. Gọi S1, S2, S3 lần lượt là diện tích của các tam giác MBC, MAC, MAB. Chứng minh rằng S1.MA + S2.MB + S3.MC = 0. + Trong mặt phẳng Oxy, cho parabol (P): y = x2 + px + q với q khác 0. Biết rằng (P) cắt trục Ox tại hai điểm phân biệt A, B và cắt trục Oy tại C. Chứng minh rằng khi p và q thay đổi, đường tròn ngoại tiếp tam giác ABC luôn đi qua một điểm cố định. + Cho hệ phương trình. Tìm tất cả các giá trị của a và b để hệ phương trình có nghiệm duy nhất.
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Cà Mau
Ngày 04 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Cà Mau tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2020 – 2021. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Cà Mau; đề gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Cà Mau : + Trong mặt phẳng Oxy cho tam giác ABC có đỉnh A(1;2), đường trung tuyến và đường phân giác trong hạ từ đỉnh B lần lượt có phương trình d: 2x – 3y = 2, d1: 9x – 3y = 16. Tìm tọa độ đỉnh C của tam giác ABC. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh a. Biết SA = SB = SC = a. Đặt SD = x (0 < x < a√3). a) Tính số đo góc giữa đường thẳng SB và mặt phẳng (ABCD) khi x = a. b) Tính x theo a sao cho tích AC.SD lớn nhất. + Cho đa giác đều có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của (H). Tính xác suất để 4 đỉnh chọn được tạo thành một hình chữ nhật nhưng không phải là hình vuông.
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Bình Phước
Ngày 15 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Phước tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2020 – 2021. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bình Phước; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Phước : + Cho tập T = {1; 2; 3; 4; 5}. Gọi H là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số đôi một khác nhau thuộc T. Chọn ngẫu nhiên một số thuộc H. Tính xác suất để số được chọn có tổng các chữ số bằng 10. + Cho hình vuông ABCD có A(-1;2). Gọi M, N lần lượt là trung điểm BC và CD. Gọi H là giao điểm của BN và AM. Viết phương trình đường tròn ngoại tiếp tam giác HDN biết phương trình đường thẳng BN: 2x + y – 8 = 0 và điểm B có hoành độ lớn hơn 2. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Gọi H là trung điểm AB. Tính thể tích khối chóp S.ABCD và tan (SH;(SCD)).
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Kon Tum
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Kon Tum; đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Kon Tum : + Một nhóm gồm 9 học sinh một lớp trong đó có ba bạn Việt, Nam và Hùng đi dự đại hội Đoàn trường, ban tổ chức sắp xếp ngẫu nhiên 9 học sinh này ngồi vào một dãy ghế được đánh số từ 1 đến 9. Tính xác suất để số ghế của bạn Hùng bằng trung bình cộng số ghế của hai bạn Việt và Nam. + Biết mặt phẳng (ABC) vuông góc với mặt phẳng (ABD). Chứng minh rằng cos A.cos B = cos C với A, B, C là ký hiệu ba góc tương ứng với các đỉnh A, B, C của tam giác ABC. + Cho hàm số f(x) = -x4 + 2mx2 – m2 – 1. Tìm m để đồ thị hàm số f(x) có ba điểm cực trị và ba điểm đó cùng gốc tọa độ O lập thành tứ giác nội tiếp đường tròn.