Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 lần 2 năm 2019 - 2020 trường Quế Võ 1 - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng Toán 12 lần 2 năm học 2019 – 2020 trường THPT Quế Võ 1 – Bắc Ninh, đề thi có mã đề 615 gồm 06 trang với 50 câu trắc nghiệm, học sinh làm bài trong khoảng thời gian 90 phút, kỳ thi nhằm giúp học sinh khối 12 rèn luyện thường xuyên để nâng cao kiến thức – kỹ năng giải Toán trắc nghiệm, hướng đến một kỳ thi THPT Quốc gia môn Toán năm 2020 thành công. Trích dẫn đề khảo sát chất lượng Toán 12 lần 2 năm 2019 – 2020 trường Quế Võ 1 – Bắc Ninh : + Bạn A trúng tuyển vào Trường Đại học Ngoại Thương nhưng vì không đủ tiền nộp học phí nên bạn A quyết định vay ngân hàng trong bốn năm, mỗi năm 4 triệu đồng để nộp học phí với lãi suất ưu đãi 3%/năm. Ngay sau khi tốt nghiệp Đại học, bạn A thực hiện trả góp hàng tháng cho ngân hàng số tiền (không đổi) với lãi suất theo cách tính mới là 0,25%/tháng trong vòng 5 năm. Tính số tiền hàng tháng bạn A phải trả cho ngân hàng (kết quả làm tròn tới hàng đơn vị). [ads] + Một hộp dựng bóng tennis có dạng hình trụ. Biết rằng hộp chứa vừa khít ba quả bóng tennis được xếp theo chiều dọc, các quả bóng tennis có kích thước như nhau. Thể tích phần không gian còn trống trong hộp chiếm tỉ lệ a% so với thể tích của hộp bóng tennis. Số a gần nhất với số nào sau đây? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SB, N là điểm thuộc cạnh SC sao cho SN = 2NC, P là điểm thuộc cạnh SD sao cho SP = 3DP. Mặt phẳng (MNP) cắt SA tại Q. Biết khối chóp S.MNPQ có thể tích bằng 1, khối đa diện ABCD.QMNP có thể tích bằng?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL 8 tuần HK1 Toán 12 năm 2023 - 2024 THPT chuyên Lê Hồng Phong - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng 8 tuần học kì 1 môn Toán 12 ABD năm học 2023 – 2024 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định (mã đề 638).
Đề KSCL 8 tuần HK1 Toán 12 năm 2021 - 2022 trường chuyên Lê Hồng Phong - Nam Định
Đề khảo sát chất lượng 8 tuần học kỳ 1 môn Toán 12 năm học 2021 – 2022 trường THPT chuyên Lê Hồng Phong – Nam Định dành cho học sinh lớp 12 theo học các khối A – B – D, đề gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 638.
Đề KSCL giữa học kì 1 Toán 12 năm 2020 - 2021 trường THPT Thạch Bàn - Hà Nội
Ngày … tháng 11 năm 2020, trường THPT Thạch Bàn, quận Long Biên, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng giữa học kì 1 môn Toán 12 năm học 2020 – 2021. Đề KSCL giữa học kì 1 Toán 12 năm 2020 – 2021 trường THPT Thạch Bàn – Hà Nội mã đề 212 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề KSCL giữa học kì 1 Toán 12 năm 2020 – 2021 trường THPT Thạch Bàn – Hà Nội : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc BAD = 60 độ và SA vuông góc với mặt phẳng (ABCD). Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 45 độ. Gọi M là điểm đối xứng của C qua B và N là trung điểm của SC. Mặt phẳng (MND) chia khối chóp S.ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích là V1, khối còn lại có thể tích là V2 (tham khảo hình vẽ bên). Tính tỉ số V2/V1. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SB, N là điểm thuộc cạnh SC sao cho SN = 2CN, P là điểm thuộc cạnh SD sao cho SP = 3DP. Mặt phẳng (MNP) cắt SA tại Q. Biết khối chóp S.MNPQ có thể tích bằng 1, khối đa diện S.ABCD có thể tích bằng? + Cho hàm số y = f(x) liên tục trên [-3;2] và có bảng biến thiên như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên [0;2]. Giá trị của M – m bằng?