Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đa thức một biến Toán 7

Tài liệu gồm 30 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề đa thức một biến trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. + Đa thức một biến (gọi tắt là đa thức) là tổng của những đơn thức của cùng một biến; mỗi đơn thức trong tổng gọi là một hạng tử của đa thức đó. + Số 0 cũng được gọi là một đa thức, gọi là đa thức không. + Kí hiệu: Ta thường kí hiệu đa thức bằng một chữ cái in hoa. Đôi khi còn viết thêm kí hiệu biến trong ngoặc đơn. PHẦN II . CÁC DẠNG BÀI. Dạng 1 : Thu gọn và sắp xếp đa thức một biến. + Thu gọn đa thức một biến: Thực hiện phép tính cộng các đơn thức cùng bậc. + Sắp xếp đa thức một biến (đa thức khác 0): Viết đa thức dưới dạng thu gọn và sắp xếp các hạng tử của nó theo lũy thừa giảm của biến. Dạng 2 : Tìm bậc và các hệ số của một đa thức. Trong một đa thức thu gọn và khác đa thức không: + Bậc của hạng tử có bậc cao nhất gọi là bậc của đa thức đó. + Hệ số của hạng tử có bậc cao nhất gọi là hệ số cao nhất của đa thức đó. + Hệ số của hạng tử có bậc 0 gọi là hệ số tự do của đa thức đó. Chú ý: + Đa thức không thì không có bậc. + Trong một đa thức thu gọn, hệ số cao nhất phải khác 0 (các hệ số khác có thể bằng 0). + Muốn tìm bậc của một đa thức chưa thu gọn, ta phải thu gọn đa thức đó. Dạng 3 : Tính giá trị của đa thức. Để tính giá trị của đa thức ta thực hiện theo các bước: + Bước 1: Thu gọn, sắp xếp đa thức theo lũy thừa giảm dần của biến. + Bước 2: Thay giá trị cụ thể của biến vào đa thức và thực hiện các phép tính. + Bước 3: Kết luận. Dạng 4 : Nghiệm của đa thức một biến. Nếu tại x a đa thức P x có giá trị bằng 0 thì ta nói a (hoặc x a) là một nghiệm của đa thức đó. + a là nghiệm của P x khi P a 0. + Một đa thức (khác đa thức không) có thể có một nghiệm, hai nghiệm … hoặc không có nghiệm. + Số nghiệm số của một đa thức không vượt quá bậc của nó. Để tìm nghiệm của đa thức P x ta cho P x 0 rồi tìm giá trị x thỏa mãn. Để chứng minh x a là nghiệm của của đa thức P x ta chỉ ra P a 0. Để chứng minh x a là không nghiệm của của đa thức P x ta chỉ ra P a 0. Gọi ẩn và lập biểu thức chứa biến biểu diễn mối quan hệ giữa đại lượng theo ẩn. PHẦN III . BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề định lí Py-ta-go
Nội dung Chuyên đề định lí Py-ta-go Bản PDF - Nội dung bài viết Chuyên đề định lí Py-ta-go Chuyên đề định lí Py-ta-go Chuyên đề định lí Py-ta-go là tài liệu hữu ích cho học sinh lớp 7 trong quá trình học tập chương trình Toán phần Hình học chương 2: Tam giác. Tài liệu gồm 08 trang, chia thành 2 phần chính: Lí thuyết trọng tâm và Các dạng bài tập. Trong phần Lí thuyết trọng tâm, tài liệu giới thiệu định lí Py-ta-go và định lí Py-ta-go đảo một cách chi tiết. Học sinh sẽ nắm được kiến thức cơ bản và cần thiết về các dạng tam giác vuông và các tính chất liên quan. Phần Các dạng bài tập tập trung vào việc áp dụng định lí Py-ta-go vào thực tế thông qua các bài tập. Học sinh sẽ được thực hành tính độ dài cạnh thứ ba của tam giác vuông, chứng minh tam giác vuông bằng định lí Py-ta-go đảo và áp dụng vào các bài toán hóc bài khó khăn. Mục tiêu của chuyên đề là giúp học sinh nắm vững kiến thức về định lí Py-ta-go, phát triển kỹ năng sáng tạo và tư duy logic trong giải các bài toán liên quan đến hình học. Đồng thời, chuyên đề cũng hướng đến việc áp dụng kiến thức này vào thực tế để giúp học sinh hiểu rõ hơn về ý nghĩa và ứng dụng của định lí Py-ta-go.
Chuyên đề tam giác cân
Nội dung Chuyên đề tam giác cân Bản PDF - Nội dung bài viết Chuyên đề tam giác cânLý thuyết trọng tâmCác dạng bài tập Chuyên đề tam giác cân Tài liệu này bao gồm 16 trang, cung cấp lý thuyết về trọng tâm, các dạng toán và bài tập liên quan đến tam giác cân. Bên cạnh đó, sách còn cung cấp đáp án và lời giải chi tiết, giúp học sinh lớp 7 tự học và ôn tập chương trình Toán lớp 7 phần Hình học chương 2: Tam giác. Mục tiêu của chuyên đề này là giúp học sinh: Kiến thức: Nắm được định nghĩa về tam giác cân, tam giác vuông cân, tam giác đều. Nắm được các tính chất và dấu hiệu nhận biết của tam giác cân, tam giác đều. Kỹ năng: Biết vẽ một tam giác cân, tam giác vuông cân và tam giác đều. Nhận biết và chứng minh được một tam giác là tam giác cân, tam giác vuông cân và tam giác đều. Vận dụng các tính chất của tam giác cân, tam giác vuông cân và tam giác đều để tính số đo góc, chứng minh các góc hoặc các cạnh bằng nhau. Lý thuyết trọng tâm Trong phần này, chúng ta sẽ tìm hiểu về trọng tâm của tam giác và những tính chất liên quan. Các dạng bài tập Dưới đây là những dạng bài tập phổ biến trong chuyên đề này: Nhận biết tam giác cân, tam giác đều. Tính số đo góc, chứng minh các góc bằng nhau. Chứng minh đoạn thẳng bằng nhau. Các bài toán tổng hợp. Thông qua việc ôn tập và giải các bài tập trong tài liệu này, học sinh sẽ có cơ hội nắm vững kiến thức về tam giác cân, tam giác vuông cân và tam giác đều, từ đó nâng cao kỹ năng giải toán và chứng minh các phép đo liên quan.