Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 7 môn Toán năm 2020 2021 trường THCS Trung Nguyên Vĩnh Phúc

Nội dung Đề thi HSG lớp 7 môn Toán năm 2020 2021 trường THCS Trung Nguyên Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi HSG lớp 7 môn Toán năm 2020-2021 trường THCS Trung Nguyên Vĩnh Phúc Đề thi HSG lớp 7 môn Toán năm 2020-2021 trường THCS Trung Nguyên Vĩnh Phúc Ngày 30 tháng 03 năm 2021, trường THCS Trung Nguyên, huyện Yên Lạc, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2020-2021. Đề thi gồm 1 trang với 5 bài toán dạng tự luận, thời gian làm bài 120 phút, kèm theo đáp án và lời giải chi tiết. Trích dẫn đề thi Toán lớp 7 năm 2020-2021 trường THCS Trung Nguyên Vĩnh Phúc: 1. Cho góc xOy bằng 60 độ. Tia Oz là phân giác của góc xOy. Từ điểm B bất kì trên tia Ox, kẻ BH, BK lần lượt vuông góc với Oy, Oz tại H và K. Qua B, kẻ đường song song với Oy cắt Oz tại M. Chứng minh rằng BH = MK. 2. Cho tam giác ABC vuông cân tại A. Điểm M nằm bên trong tam giác sao cho MA = 2cm, MB = 3cm và ∠AMC = 135 độ. Tính MC. 3. Từ 200 số tự nhiên 1, 2, 3,..., 200, ta lấy ra k số bất kì sao cho trong các số vừa lấy luôn tìm được 2 số mà số này là bội của số kia. Tìm giá trị nhỏ nhất của k. Đề thi gồm các câu hỏi đa dạng, từ việc chứng minh đẳng thức đến tính toán số học, đòi hỏi học sinh phải có kiến thức vững chắc và khả năng suy luận logic tốt. Việc giải quyết các bài toán này không chỉ giúp học sinh rèn luyện kỹ năng Toán mà còn phát triển khả năng tư duy logic và sáng tạo.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 7 năm 2022 - 2023 trường THCS Đồng Xuân - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát học sinh giỏi môn Toán 7 năm học 2022 – 2023 trường THCS Đồng Xuân, tỉnh Vĩnh Phúc; đề thi gồm 01 trang với 09 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 7 năm 2022 – 2023 trường THCS Đồng Xuân – Vĩnh Phúc : + Một người gửi tiết kiệm tại ngân hàng với số tiền là 200 triệu đồng, gửi theo lãi suất 6% kỳ hạn 1 năm lĩnh lãi mỗi quý (3 tháng). Theo quy định nếu đến hạn mà người gửi không đến lĩnh lãi thì số tiền lãi đó sẽ được nhập vào vốn gửi ban đầu. Do công việc người đó không đến lĩnh kỳ quý thứ nhất, các quý còn lại thì vẫn được lĩnh lãi bình thường. Vậy tổng số tiền gửi và lãi sau 1 năm là bao nhiêu? + Cho tam giác ABC có A 90. Kẻ AH vuông góc với BC (H thuộc BC). Tia phân giác của góc HAC cắt cạnh BC ở điểm D và tia phân giác của góc HAB cắt cạnh BC ở E. Chứng minh AB AC BC DE. + Cho ∆ABC vuông cân tại A. Gọi M là trung điểm của BC. Lấy điểm E nằm giữa hai điểm C và M. Kẻ BH và CK lần lượt vuông góc với đường thẳng AE (H K thuộc đường thẳng AE). a) Chứng minh: BH AK. b) Chứng minh: AHM CKM.
Đề giao lưu HSG Toán 7 năm 2022 - 2023 phòng GDĐT Lang Chánh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Lang Chánh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 01 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Lang Chánh – Thanh Hóa : + Tìm các cặp số nguyên x y thoả mãn: 2 x xy y x 3 5 30. Cho các số nguyên tố p và q thoả mãn: 2 2 p q 2 17. Tính 4 15 p q. + Cho tam giác ABC có góc A 60 (góc B và góc C nhọn). Tia phân giác của góc B cắt AC tại D, tia phân giác của góc C cắt AB tại E. BD cắt CE tại I. Trên cạnh BC lấy F sao cho BF BE. Trên tia IF lấy M sao cho IM IB IC. a) Tính góc BIC và chứng minh ID IF. b) Chứng minh tam giác BCM là tam giác đều. c) Tìm điều kiện của tam giác ∆ABC để D và E cách đều đường thẳng BC. + Cho các số không âm x, y, z thoả mãn: x z 3 2022 và x y 2 2023. Tính giá trị lớn nhất của biểu thức: 1 2 Axyz.
Đề học sinh giỏi huyện Toán 7 năm 2022 - 2023 phòng GDĐT Kỳ Anh - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Kỳ Anh, tỉnh Hà Tĩnh. Trích dẫn Đề học sinh giỏi huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Kỳ Anh – Hà Tĩnh : + Tìm các hệ số a, b biết rằng đa thức ax3 + bx2 − 3x + 3 chia cho (x − 1)(x + 1) được dư là 7. + Ba anh An, Bình, Dũng cùng góp vốn để thành lập công ty với tổng số tiền góp là 294 triệu đồng. Biết rằng 1/9 số tiền anh An góp bằng 1/8 số tiền anh Bình góp; 1/10 số tiền anh Dũng góp bằng 1/12 số tiền anh An góp. a) Tính số tiền góp của mỗi người. b) Theo thỏa thuận, lợi nhuận được chia theo tỷ lệ góp vốn. Năm 2022 lợi nhuận thu về của công ty là 120 triệu đồng. Em hãy tính số tiền lợi nhuận mà mỗi người nhận được trong năm 2022. + Cho tam giác ABC cân tại A. Vẽ đường phân giác AD. Lấy điểm E trên tia đối của tia CA sao cho CE = CA. Qua điểm B, kẻ đường thẳng song song với AC cắt đường thẳng DE tại F. a) Chứng minh rằng tam giác ABF cân. b) Tính số đo góc DAF? c) Tính tỷ số diện tích tam giác CDE và tam giác ADF?
Đề HSG cấp huyện Toán 7 năm 2022 - 2023 phòng GDĐT Hiệp Hòa - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hiệp Hòa, tỉnh Bắc Giang; kỳ thi được diễn ra vào thứ Bảy ngày 25 tháng 03 năm 2023. Trích dẫn Đề HSG cấp huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Hiệp Hòa – Bắc Giang : + Cho p là tích của 2023 số nguyên tố đầu tiên. Chứng minh rằng p – 1 và p + 1 không là số chính phương. + Cho tam giác ABC vuông cân tại A. Trên các cạnh AB, AC lần lượt lấy điểm D và E sao cho AD = AE. Qua A và D kẻ đường thẳng vuông góc với BE cắt BC lần lượt tại M và N. Tia ND cắt tia CA tại I. a) Chứng minh DI = BE b) Qua N kẻ đường thẳng song song với AC cắt AM tại F. Chứng minh NF = AI. c) Chứng minh AM = 1/2.NI. + Cho tam giác ABC có AB < AC < BC. Điểm E nằm trong tam giác. Chứng minh EA + EB + EC < AC + BC.