Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình chữ nhật

Nội dung Chuyên đề hình chữ nhật Bản PDF - Nội dung bài viết Chuyên đề hình chữ nhậtI. Tóm tắt lý thuyếtII. Bài tập và các dạng toán Chuyên đề hình chữ nhật Tài liệu này bao gồm 31 trang, cung cấp tóm tắt lý thuyết cần thiết về hình chữ nhật, phân dạng và hướng dẫn giải các dạng toán liên quan. Bên cạnh đó, tài liệu cũng chọn lọc các bài tập từ cơ bản đến nâng cao trong chuyên đề hình chữ nhật, kèm theo đáp án và lời giải chi tiết. Đây là nguồn tư liệu hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. Tóm tắt lý thuyết Hình chữ nhật là tứ giác có bốn góc vuông, đồng thời có tất cả các tính chất của hình bình hành và hình thang cân. Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm. Để nhận biết hình chữ nhật, có thể dựa vào ba góc vuông, một góc vuông hoặc các đường chéo bằng nhau. Ngoài ra, tài liệu cũng áp dụng các tính chất của hình chữ nhật vào tam giác vuông. II. Bài tập và các dạng toán Trên tài liệu cung cấp các dạng bài tập minh họa và áp dụng tính chất hình chữ nhật để chứng minh các tính chất hình học. Ngoài ra, có các bài tập nâng cao về đường trung tuyến của tam giác vuông và đường thẳng song song. Phần phiếu tự luyện cũng tập trung vào chứng minh tứ giác là hình chữ nhật, tính chất đường trung tuyến của tam giác vuông và tìm điều kiện để tứ giác là hình chữ nhật. Đây là tài liệu hữu ích để học sinh nắm vững kiến thức về hình chữ nhật và phát triển tư duy trong việc giải các bài toán hình học.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề tìm GTLN - GTNN của biểu thức bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 66 trang, được biên soạn bởi thầy giáo Trần Đình Hoàng, hướng dẫn phương pháp giải các dạng toán chuyên đề tìm GTLN – GTNN của biểu thức bồi dưỡng học sinh giỏi Toán 8. I. LÝ THUYẾT 2. II. MỘT SỐ PHƯƠNG PHÁP CƠ BẢN 3. Phương pháp 1. Sử dụng phép biến đổi đồng nhất 3. + Dạng 1. Tìm GTNN và GTLN của đa thức bậc hai đơn giản 3. + Dạng 2. Tìm GTNN và GTLN của đa thức bậc bốn đơn giản 10. + Dạng 3. Tìm GTNN và GTLN của biểu thức dạng A/B 14. + Dạng 4. Tìm min – max của biểu thức có điều kiện của biến 31. + Dạng 5. Sử dụng các bất đẳng thức cơ bản 41. + Dạng 6. Tìm min – max bằng cách sử dụng bất đẳng thức có chứa dấu giá trị tuyệt đối 44. Phương pháp 2. Phương pháp chọn điểm rơi 47. Phương pháp 3. Sử dụng phương pháp đặt biến phụ 53. Phương pháp 4. Sử dụng biểu thức phụ 56. Phương pháp 5. Phương pháp miền giá trị 59. Phương pháp 6. Phương pháp xét từng khoảng giá trị 61. Phương pháp 7. Phương pháp hình học 64.
Chuyên đề giải phương trình bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 45 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề giải phương trình bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Phương trình có hệ số đối xứng. Dạng 2. Phương trình dạng x a x b x c x d k. Dạng 3. Phương trình đưa được về dạng phương trình trùng phương. Dạng 4. Giải phương trình bằng cách đặt ẩn phụ. Dạng 5. Nhẩm nghiệm đưa về phương trình tích. Dạng 6. Phương trình bậc cao. Dạng 7. Phương trình chứa ẩn ở mẫu. Dạng 8. Phương trình chứa dấu giá trị tuyệt đối.
Chuyên đề phương trình nghiệm nguyên bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 24 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề phương trình nghiệm nguyên bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Sử dụng tính chất 2 a a k. Dạng 2. Đưa về tổng các số chính phương. Dạng 3. Đưa về phương trình tích. Dạng 4. Đưa về ước số. Dạng 5. Sử dụng bất đẳng thức.
Chuyên đề phân tích đa thức thành nhân tử bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 66 trang, được biên soạn bởi thầy giáo Trần Đình Hoàng, hướng dẫn phương pháp giải các dạng toán chuyên đề phân tích đa thức thành nhân tử bồi dưỡng học sinh giỏi Toán 8. 1. Phương pháp đặt nhân tử chung 2. 2. Phương pháp dùng hằng đẳng thức 2. 3. Phương pháp nhóm hạng tử 4. 4. Phối hợp nhiều phương pháp 6. 5. Phương pháp tách hạng tử 11. + Dạng 1. Phân tích đa thức thành nhân tử của đa thức bậc hai 11. + Dạng 2. Phân tích đa thức thành nhân tử của đa thức bậc ba 11. + Dạng 3. Phân tích đa thức thành nhân tử của đa thức bậc bốn 13. + Dạng 4. Phân tích đa thức thành nhân tử của đa thức bậc cao 15. 6. Phương pháp thêm bớt cùng một hạng tử 16. 7. Phương pháp đổi biến số (hay đặt ẩn phụ) 18. + Dạng 1. Đặt biến phụ (x2 + ax + m)(x2 + ax + n) + p 18. + Dạng 2. Đặt biến phụ dạng (x + a)(x + b(x + c)(x + d) + e 19. + Dạng 3. Đặt biến phụ dạng (x + a)4 + (x + b)4 + c 21. + Dạng 4. Đặt biến phụ dạng đẳng cấp 21. + Dạng 5. Đặt biến phụ dạng khác 22. 8. Phương pháp hệ số bất định 25. 9. Phương pháp tìm nghiệm của đa thức 30. 10. Phương pháp xét giá trị riêng 32.