Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2020 2021 trường chuyên Trần Hưng Đạo Bình Thuận

Nội dung Đề tuyển sinh môn Toán năm 2020 2021 trường chuyên Trần Hưng Đạo Bình Thuận Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2020-2021 trường chuyên Trần Hưng Đạo Bình Thuận Đề thi tuyển sinh môn Toán năm 2020-2021 trường chuyên Trần Hưng Đạo Bình Thuận Ngày Chủ Nhật 05 tháng 07 năm 2020, trường THPT chuyên Trần Hưng Đạo tại thành phố Phan Thiết, tỉnh Bình Thuận đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán cho năm học 2020-2021. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận và thời gian làm bài là 150 phút (không tính thời gian giám thị coi thi và phát đề). Trong đề thi, có một bài toán yêu cầu chứng minh rằng ba điểm M, H, N trên mặt phẳng thẳng hàng. Bài toán khác đưa ra vấn đề tìm đường tròn đi qua 20 điểm phân biệt trong mặt phẳng, với 12 điểm nằm bên trong đường tròn và 8 điểm nằm bên ngoài. Ngoài ra, đề thi còn yêu cầu học sinh tìm tất cả các số nguyên tố p sao cho 2p + 1 là lập phương của một số nguyên dương. Đây là một bài toán khá thú vị và đòi hỏi sự tỉ mỉ, cẩn thận từ học sinh khi giải quyết. Chắc chắn rằng, đề thi tuyển sinh môn Toán của trường chuyên Trần Hưng Đạo - Bình Thuận năm nay sẽ là một thách thức đáng kể đối với các thí sinh, đồng thời cũng là bài kiểm tra hiểu biết và kỹ năng của họ trong môn học này.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán (chuyên) vào lớp 10 năm 2023 - 2024 trường THPT chuyên Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát môn Toán (dành cho thí sinh thi vào chuyên Toán) tuyển sinh vào lớp 10 năm học 2023 – 2024 trường THPT chuyên Thái Nguyên, tỉnh Thái Nguyên. Trích dẫn Đề khảo sát Toán (chuyên) vào lớp 10 năm 2023 – 2024 trường THPT chuyên Thái Nguyên : + Cho 1003 số hữu tỷ khác 0, trong đó 4 số bất kỳ nào trong chúng cũng có thể lập thành một tỉ lệ thức. Chứng minh rằng trong các số đã cho có ít nhất 1000 số bằng nhau. + Cho hình thang ABCD nội tiếp đường tròn bán kính R = 3cm với BC = 2 cm và AD = 4cm. Lấy điểm M trên cạnh AB sao cho MB = 3MA. Gọi N là trung điểm của cạnh CD. Đường thẳng MN cắt AC tại P. a) Tính tỉ số CP/PA. b) Tính diện tích tứ giác APND. + Cho tứ giác ABCD nội tiếp đường tròn tâm O. Các đường phân giác của các góc BAD, BCD cắt nhau tại điểm K nằm trên đường chéo BD. Gọi M là trung điểm của BD, Q là giao điểm khác A của đường thẳng AM và đường tròn (O). Đường thẳng qua C song song với AD cắt tia AM tại P. N là trung điểm của CP. Chứng minh rằng: a) Hai tam giác ABQ và ADQ có diện tích bằng nhau. b) DN vuông góc với CP.
Đề khảo sát Toán (Tin) vào lớp 10 năm 2023 - 2024 trường THPT chuyên Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát môn Toán (dành cho thí sinh thi vào chuyên Tin) tuyển sinh vào lớp 10 năm học 2023 – 2024 trường THPT chuyên Thái Nguyên, tỉnh Thái Nguyên. Trích dẫn Đề khảo sát Toán (Tin) vào lớp 10 năm 2023 – 2024 trường THPT chuyên Thái Nguyên : + Cho hai phương trình: x2 − bx + 4c = 0 (1); x2 – b2x – 4bc = 0 (2) (trong đó x là ẩn, b và c là các tham số). Biết phương trình (1) có hai nghiệm x1 và x2, phương trình (2) có hai nghiệm x3 và x4 thỏa mãn điều kiện x3 − x1 = x4 − x2 = 1. Xác định b và c. + Cho tập hợp X chứa đúng 501 số nguyên dương bất kỳ thỏa mãn mỗi số đó nhỏ hơn hoặc bằng 1000. Chứng minh rằng trong X có ít nhất một số chia hết cho một số khác. + Cho tam giác nhọn ABC có ba đường cao AD, BE, CF cắt nhau tại H. Gọi M là trung điểm của đoạn AH. a. Chứng minh tứ giác BDHF nội tiếp đường tròn. b. Chứng minh AF.AB = AH.AD. c. Gọi O là trung điểm của cạnh BC, chứng minh ME vuông góc với EO. d. Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh DJI = DEB.
Bộ đề trắc nghiệm ôn thi tuyển sinh vào lớp 10 THPT môn Toán
Tài liệu gồm 177 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tuyển tập 20 đề trắc nghiệm ôn thi tuyển sinh vào lớp 10 THPT môn Toán; các đề được biên soạn theo hình thức trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, không kể thời gian phát đề.
Đề khảo sát Toán (Tin) vào 10 năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán (Tin) ôn thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; đề thi dùng cho thí sinh thi vào lớp 10 chuyên Tin học; kỳ thi được diễn ra vào Chủ Nhật ngày 16 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán (Tin) vào 10 năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Cho ba điểm A B C cố định nằm trên một đường thẳng d (B nằm giữa A và C). Vẽ đường tròn tâm O thay đổi nhưng luôn đi qua B và C (O không thuộc đường thẳng d). Kẻ AM và AN là các tiếp tuyến với đường tròn tâm O (M, N là các tiếp điểm và N thuộc cung nhỏ BC). Đường thẳng AO cắt MN tại điểm H và cắt đường tròn tại các điểm P và Q (P nằm giữa A và Q). Gọi I là trung điểm của BC. + Cho 2023 hình chữ nhật có chiều rộng bằng 1 cm và chiều dài lần lượt bằng 1 x cm 2 x cm 2023 x cm. Biết rằng 1 2 2023 x x là các số nguyên dương khác 1 thỏa mãn điều kiện 1 2 2023 1 1 1 … 88 x. Chứng minh rằng trong 2023 hình chữ nhật này có ít nhất hai hình chữ nhật có diện tích bằng nhau. + Cho hai số thực a b phân biệt thỏa mãn 2 2 a a b b c 2023 2023 với c là một số thực dương. Chứng minh rằng 1 1 2023 0 a b c.