Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2018 trường THPT Bình Giang - Hải Dương lần 2

Đề thi thử Toán THPTQG 2018 trường THPT Bình Giang – Hải Dương lần 2 mã đề 163 được biên soạn nhằm kiểm tra chất lượng ôn tập môn Toán của học sinh khối 12 trong quá trình chuẩn bị cho kỳ thi THPT Quốc gia 2018, đề gồm 50 câu hỏi trắc nghiệm khách quan, thí sinh có 90 phút để hoàn thành đề thi, đề có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 : + Sân vận động Sports Hub (Singapore) là sân có mái vòm kỳ vĩ nhất thế giới. Đây là nơi diễn ra lễ khai mạc Đại hội thể thao Đông Nam Á được tổ chức ở Singapore năm 2015. Nền sân là một Elíp (E) có trục lớn dài 150m, trục bé dài 90m (Hình 3). Nếu cắt sân vận động theo một mặt phẳng vuông góc với trục lớn của (E) và cắt Elíp (E) ở M, N (Hình 3) thì ta được thiết diện luôn là một phần của hình tròn có tâm I (phần tô đậm trong Hình 4) với MN là một dây cung và góc MIN = 90 độ. Để lắp máy điều hòa không khí cho sân vận động thì các kỹ sư cần tính thể tích phần không gian bên dưới mái che và bên trên mặt sân, coi như mặt sân là một mặt phẳng và thể tích vật liệu làm mái không đáng kể. Hỏi thể tích đó xấp xỉ bao nhiêu? [ads] + Bác Tôm có một cái ao có diện tích 50m2 để nuôi cá. Vụ vừa qua bác nuôi với mật độ 20 con/m2 và thu được tất cả 1,5 tấn cá thành phẩm. Theo kinh nghiệm nuôi cá thu được, bác thấy cứ thả giảm đi 8 con/m2 thì tương ứng sẽ có mỗi con cá thành phẩm thu được tăng thêm 0,5kg. Hỏi vụ tới bác phải mua bao nhiêu con cá giống để đạt được tổng khối lượng cá thành phẩm cao nhất? (Giả sử không có hao hụt trong quá trình nuôi). + Do có nhiều cố gắng trong học kỳ 1 năm học lớp 12, Hoa được bố mẹ cho chọn một phần thưởng dưới 5 triệu đồng. Nhưng Hoa muốn mua một cái Laptop 10 triệu đồng nên bố mẹ đã cho Hoa 5 triệu đồng gửi vào ngân hàng (vào ngày 1 tháng 1 năm 2018) với lãi suất 1% trên tháng, đồng thời ngày đầu tiên mỗi tháng (bắt đầu từ ngày 1 tháng 2 năm 2018) bố mẹ sẽ cho Hoa 300000 đồng và cũng gửi tiền vào ngân hàng với lãi suất 1% trên tháng. Biết hàng tháng Hoa không rút lãi ra và tiền lãi được cộng vào vốn cho tháng sau, chỉ rút vốn vào cuối tháng mới được tính lãi của tháng ấy. Hỏi ngày nào trong các ngày dưới đây là ngày gần nhất với ngày 1 tháng 2 năm 2018 mà bạn Hoa có đủ tiền để mua Laptop?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GDĐT Bà Rịa - Vũng Tàu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 1 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; đề thi có đáp án mã đề 132 – 209 – 357 – 485; kỳ thi được diễn ra vào thứ Năm ngày 30 tháng 03 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Bà Rịa – Vũng Tàu : + Anh Ba đang trên chiếc thuyền tại vị trí A cách bờ sông 2km, anh dự định chèo thuyền vào bờ và tiếp tục chạy bộ theo một đường thẳng để đến một địa điểm B tọa lạc ven bờ sông, B cách vị trí O trên bờ gần với thuyền nhất là 4km(hình vẽ). Biết rằng anh Ba chèo thuyền với vận tốc 6 km h và chạy bộ trên bờ với vận tốc 10 km h. Khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm B là? + Trong không gian Oxyz, cho ba điểm A 1 4 5 B 3 4 0 C 2 1 0 và mặt cầu 2 2 2 S x y z 1 1 3 4 điểm N thay đổi trên mặt cầu S. Gọi M m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 2 2 2 P NA NB NC 3. Giá trị M m bằng? + Cho hình nón đỉnh S, đường cao SO. Gọi A và B là hai điểm thuộc đường tròn đáy hình nón sao cho khoảng cách từ O đến AB bằng a và 0 SAO 30 0 SAB 60. Diện tích xung quanh hình nón bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GDĐT Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm 2023 môn Toán lần 1 sở Giáo dục và Đào tạo tỉnh Bắc Giang; đề thi có đáp án mã đề 101 – 102 – 103 – 104; kỳ thi được diễn ra vào thứ Năm ngày 30 tháng 03 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Bắc Giang : + Cho khối nón tròn xoay đỉnh S, đáy là đường tròn tâm O, góc ở đỉnh bằng 0 120. Mặt phẳng (Q) thay đổi, đi qua S và cắt khối nón theo thiết diện là tam giác SAB. Biết rằng giá trị lớn nhất diện tích tam giác SAB là 2 2a. Khoảng cách từ O đến mặt phẳng (Q) trong trường hợp diện tích tam giác SAB đạt giá trị lớn nhất là? + Trong tập các số phức, cho phương trình 2 z m z m 2 1 6 2 0 (m tham số thực). Hỏi có tất cả bao nhiêu giá trị nguyên của m để phương trình đã cho có hai nghiệm phân biệt 1 2 z z thỏa mãn 1 2 z z. + Xếp ngẫu nhiên 3 quả cầu màu đỏ có kích thước khác nhau và 3 quả cầu màu xanh giống nhau vào một giá chứa đồ nằm ngang có 7 ô trống, mỗi quả cầu được xếp vào một ô. Tính xác suất để 3 quả cầu màu đỏ xếp cạnh nhau và 3 quả cầu màu xanh xếp cạnh nhau?
Đề thi thử TN THPT 2023 môn Toán cụm trường THPT huyện Nam Trực - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán cụm các trường THPT thuộc huyện Nam Trực, tỉnh Nam Định; đề thi mã đề 501; hình thức trắc nghiệm với 50 câu, thời gian làm bài 90 phút. Trích dẫn Đề thi thử TN THPT 2023 môn Toán cụm trường THPT huyện Nam Trực – Nam Định : + Cho a, b là các số thực dương khác 1, đường thẳng d song song trục hoành cắt trục tung, đồ thị hàm số y = ax, đồ thị hàm số y = bx lần lượt tại H, M, N (như hình bên). Biết HM = 3MN. Mệnh đề nào sau đây đúng? + Trong không gian với hệ trục Oxyz, cho điểm A(2;-2;2) và mặt cầu (S): x2 + y2 + (z + 2)2 = 1. Điểm M di chuyển trên mặt cầu (S) đồng thời thỏa mãn OM.AM = 6. Điểm M luôn thuộc mặt phẳng nào dưới đây? + Cho khối chóp S.ABC có đáy là tam giác vuông cân tại B. Khoảng cách từ A đến mặt phẳng (SBC) bằng a2, SAB = SCB = 90°. Khi độ dài cạnh AB thay đổi, thể tích khối chóp S.ABC có giá trị nhỏ nhất bằng?
Đề thi thử TN THPT 2023 môn Toán lần 2 trường chuyên Hạ Long - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán lần 2 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh (mã đề 111). Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 2 trường chuyên Hạ Long – Quảng Ninh : + Trong không gian cho hệ trục Oxyz; cho A(1;1;2), B(-4;0;11), C(0;–21;0). Có bao nhiêu điểm D sao cho A, B, C, D là bốn đỉnh của một hình bình hành. A. Có vô số điểm D C. Có 2 điểm D B. Có duy nhất một điểm D D. Có 3 điểm D. + Cho mặt cầu S(O;9). Một hình nón có đỉnh và đường tròn đáy nằm trên mặt cầu S. Khi thể tích của hình nón lớn nhất, diện tích đường tròn đáy của hình nón thuộc khoảng nào dưới đây? + Trong không gian cho hệ trục Oxyz; lấy các điểm A(a;0;0), B(0;b;0), C(0;0;c), D với a, b, c dương. Biết diện tích tam giác ABC bằng 3/2 (đvdt) và thể tích tứ diện ABCD đạt giá trị lớn nhất. Khi đó phương trình mặt phẳng (ABD) là mx + ny + pz + 1 = 0. Tính m + n + p.