Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 12 lần 2 năm 2022 - 2023 trường THPT Quảng Xương 2 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh giỏi cấp tỉnh môn Toán 12 lần 2 năm học 2022 – 2023 trường THPT Quảng Xương 2, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 12 lần 2 năm 2022 – 2023 trường THPT Quảng Xương 2 – Thanh Hóa : + Cho hình chóp S ABC có đáy ABC là tam giác vuông. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Mặt phẳng (β) đi qua trung điểm của BC và vuông góc với SC. Thiết diện của hình chóp S ABC cắt bởi (β) là A. Hình thang cân. B. Tam giác vuông. C. Tam giác đều. D. Tam giác cân. + Một bể nước lớn của một khu công nghiệp có phần chứa nước là một khối nón đỉnh S phía dưới (hình vẽ), đường sinh SA m 27. Có một lần lúc bể nước chứa đầy, người ta phát hiện nước trong bể không đạt yêu cầu về vệ sinh nên lãnh đạo khu công nghiệp cho thoát hết nước để làm vệ sinh bể chứa. Công nhân cho thoát nước ba lần qua một lỗ ở đỉnh S. Lần thức nhất khi mực nước tới điểm M thuộc SA thì dừng, lần thứ hai khi mực nước tới điểm N SA thì dừng, lần thứ ba mới thoát hết nước. Biết lượng nước mỗi lần thoát là bằng nhau. Tính độ dài đoạn MN. + Bác Hoa đem gửi tiết kiệm số tiền 400 triệu đồng ở hai loại kỳ hạn khác nhau. Bác gửi 250 triệu đồng theo kỳ hạn 3 tháng với lãi suất 1,1%/1 quý. Số tiền còn lại bác gửi theo kỳ hạn 1 tháng với lãi suất x%/1 tháng. Biết rằng nếu không rút lãi thì số lãi sẽ được gộp vào gốc để tính lãi cho kỳ hạn tiếp theo. Tính x (làm tròn đến chữ số thứ hai sau dấu phẩy), biết rằng sau một năm, số tiền gốc và lãi bác Hoa thu được là 425.250.000 đồng.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG thành phố lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Hải Phòng (Không chuyên)
Nội dung Đề thi chọn HSG thành phố lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Hải Phòng (Không chuyên) Bản PDF Đề thi chọn HSG thành phố Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Hải Phòng (Bảng không chuyên) gồm 7 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi : + Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác ABC vuông tại C. Gọi M, N lần lượt là trung điểm của A’C’ và BC. Biết AC = a, BC = a√3, số đo của góc tạo bởi hai mặt phẳng (ABC’) và (ABC) bằng 60 độ. a) Tính thể tích của khối lăng trụ ABC.A’B’C’ b) Tính diện tích thiết diện của lăng trụ ABC.A’B’C’ cắt bởi mặt phẳng (AMN) [ads] + Người ta dùng 18 cuốn sách bao gồm 7 cuốn sách Toán, 6 cuốn sách Vật lý và 5 cuốn sách Hoá học (các cuốn sách cùng loại giống nhau hoàn toàn) để làm phần thưởng cho 9 học sinh (trong đó có hai học sinh A và B), mỗi học sinh nhận được hai cuốn sách khác thể loại (không tính thứ tự các cuốn sách). Tính xác suất để hai học sinh A và B nhận được phần thưởng giống nhau. + Trong mặt phẳng với hệ toạ độ Oxy, cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của AB, BC; điểm E(22/5, 11/5) là giao điểm của hai đường thẳng CM và DN. Gọi H là trung điểm của DE, đường thẳng AH cắt cạnh CD tại P(7/2; 1). Tìm toạ độ điểm A, biết hoành độ điểm A nhỏ hơn 4.
Đề thi chọn HSG cấp trường năm học 2017 2018 môn Toán trường Trần Hưng Đạo Vĩnh Phúc
Nội dung Đề thi chọn HSG cấp trường năm học 2017 2018 môn Toán trường Trần Hưng Đạo Vĩnh Phúc Bản PDF Đề thi chọn HSG lớp 12 cấp trường năm học 2017 – 2018 môn Toán trường THPT Trần Hưng Đạo – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD có A(5, -7), điểm C thuộc đường thẳng có phương trình (d1): x – y + 4 = 0. Đường thẳng đi qua D và trung điểm của đoạn AB có phương trình (d2): 3x – 4y – 23 = 0. Tìm tọa độ của B và C, biết điểm B có hoành độ dương. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a góc BAD = 60 độ, hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với điểm G là trọng tâm tam giác BCD. Góc giữa SA và mặt phẳng (ABCD) bằng 60 độ. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng DC và SA theo a. + Cho A là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau lập được từ các chữ số 0, 2, 3, 5, 6, 8. Lấy ngẫu nhiên một số thuộc tập A. Tính xác suất để số lấy được có chữ số 0 và chữ số 5 không đứng cạnh nhau.
Đề thi chọn HSG cấp huyện THPT năm học 2017 2018 môn Toán sở GD và ĐT Cao Bằng
Nội dung Đề thi chọn HSG cấp huyện THPT năm học 2017 2018 môn Toán sở GD và ĐT Cao Bằng Bản PDF Đề thi chọn HSG cấp huyện lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Cao Bằng gồm 1 trang với 7 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giao đề), đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một trường trung học phổ thông có 12 học sinh giỏi gồm ba học sinh khối 10, bốn học sinh khối 11 và năm học sinh khối 12. Chọn sáu học sinh trong số học sinh giỏi đó, tính xác suất sao cho cả ba khối đều có học sinh được chọn. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBD) và mặt phẳng đáy bằng 60 độ. [ads] a. Tính thể tích khối chóp S.ABCD b. Tính khoảng cách từ điểm D đến mặt phẳng (SBC) + Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD. Điểm M (-3; 0) là trung điểm của cạnh AB, điểm H(0; -1) là hình chiếu vuông góc của B trên AD và điểm G(4/3; 3) là trọng tâm của tam giác BCD. Tìm tọa độ các điểm B, D.
Đề thi học sinh giỏi lớp 12 môn Toán năm học 2017 2018 trường THPT Đan Phượng Hà Nội
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm học 2017 2018 trường THPT Đan Phượng Hà Nội Bản PDF Đề thi học sinh giỏi môn Toán lớp 12 năm học 2017 – 2018 trường THPT Đan Phượng – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Đề thi có đáp án, lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho hàm số: y = (x – 1)/2(x + 1) (C). Tìm những điểm M trên (C) sao cho tiếp tuyến với (C) tại M tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng 4x + y = 0. [ads] + Cho hàm số y = x^3 – 3(m+1)x – 2 với m là tham số. Tìm các giá trị của m để đồ thị hàm số cắt trục Ox tại một điểm. + Cho tam giác ABC vuông tại A, D là một điểm nằm trong tam giác ABC sao cho CD = CA. M là một điểm trên cạnh AB sao cho góc BDM = 1/2.ACD, N là giao điểm của MD và đường cao AH của tam giác ABC. Chứng minh DM = DN. + Cho tam giác ABC cân tại A có AB = AC = a, góc BAC = 120 độ. Điểm S thay đổi trong không gian nhưng luôn nằm về 1 phía của mặt phẳng (ABC) và AS = a, góc SAB = 60 độ. Gọi H là hình chiếu của S trên mặt phẳng (ABC). a) Chứng minh rằng H thuộc đường thẳng cố định. b) Chứng minh rằng khi độ dài SH lớn nhất thì hai mặt phẳng (SAB) và (ABC) vuông góc với nhau và khi đó tính độ dài SC.