Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

22 chuyên đề bồi dưỡng Hình học 7

Tài liệu gồm 229 trang, tuyển tập 22 chuyên đề bồi dưỡng Hình học 7, có đáp án và lời giải chi tiết. CÁC CHUYÊN ĐỀ BỒI DƯỠNG Chương I : ĐƯỜNG THẲNG VUÔNG GÓC. ĐƯỜNG THẲNG SONG SONG. Chuyên đề 1: Hai góc đối đỉnh 3. Chuyên đề 2: Hai đường thẳng vuông góc 7. Chuyên đề 3: Dấu hiệu nhận biết hai đường thẳng song song 11. Chuyên đề 4: Tiên đề Ơ-clit. Tính chất của hai đường thẳng song song 15. Chuyên đề 5: Định lí 20. Chuyên đề 6: Chứng minh phản chứng 24. Chương II : TAM GIÁC. Chuyên đề 7: Tổng ba góc của một tam giác 29. Chuyên đề 8: Hai tam giác bằng nhau. Các trường hợp bằng nhau của hai tam giác 35. Chuyên đề 9: Tam giác cân 48. Chuyên đề 10: Định lý Pytago 60. Chuyên đề 11: Các trường hợp bằng nhau của tam giác vuông 69. Chuyên đề 12: Vẽ hình phụ để giải bài toán 73. Chuyên đề 13: Chứng minh ba điểm thẳng hàng 81. Chuyên đề 14: Tính số đo góc 88. Chương III : QUAN HỆ CÁC YẾU TỐ TRONG TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC. Chuyên đề 15: Quan hệ giữa góc và cạnh đối diện trong một tam giác 96. Chuyên đề 16: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu 100. Chuyên đề 17: Quan hệ giữa ba cạnh của một tam giác 104. Chuyên đề 18: Tính chất đường trung tuyến của tam giác 108. Chuyên đề 19: Tính chất tia phân giác của một góc. Tính chất ba đường phân giác của tam giác 112. Chuyên đề 20: Tính chất ba đường trung trực, ba đường cao của tam giác 116. Chuyên đề 21: Chứng minh ba đường thẳng đồng quy 122. Chuyên đề 22: Bất đẳng thức và cực trị hình học 127. HƯỚNG DẪN GIẢI – ĐÁP SỐ Chương I : ĐƯỜNG THẲNG VUÔNG GÓC. ĐƯỜNG THẲNG SONG SONG. Chuyên đề 1: Hai góc đối đỉnh 133. Chuyên đề 2: Hai đường thẳng vuông góc 138. Chuyên đề 3: Dấu hiệu nhận biết hai đường thẳng song song 142. Chuyên đề 4: Tiên đề Ơ-clit. Tính chất của hai đường thẳng song song 146. Chuyên đề 5: Định lí 150. Chuyên đề 6: Chứng minh phản chứng 154. Chương II : TAM GIÁC. Chuyên đề 8: Hai tam giác bằng nhau. Các trường hợp bằng nhau của hai tam giác 162. Chuyên đề 9: Tam giác cân 168. Chuyên đề 10: Định lý Pytago 175. Chuyên đề 11: Các trường hợp bằng nhau của tam giác vuông 180. Chuyên đề 12: Vẽ hình phụ để giải bài toán 185. Chuyên đề 13: Chứng minh ba điểm thẳng hàng 190. Chuyên đề 14: Tính số đo góc 194. Chương III : QUAN HỆ CÁC YẾU TỐ TRONG TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC. Chuyên đề 15: Quan hệ giữa góc và cạnh đối diện trong một tam giác 203. Chuyên đề 16: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu 209. Chuyên đề 17: Quan hệ giữa ba cạnh của một tam giác 213. Chuyên đề 18: Tính chất đường trung tuyến của tam giác 219. Chuyên đề 19: Tính chất tia phân giác của một góc. Tính chất ba đường phân giác của tam giác 226. Chuyên đề 20: Tính chất ba đường trung trực, ba đường cao của tam giác 232. Chuyên đề 21: Chứng minh ba đường thẳng đồng quy 239. Chuyên đề 22: Bất đẳng thức và cực trị hình học 245.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác Toán 7
Tài liệu gồm 22 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Bài tập lí thuyết: Viết kí hiệu về sự bằng nhau của hai tam giác, từ kí hiệu bằng nhau của hai tam giác suy ra các cạnh – góc bằng nhau. + Từ kí hiệu tam giác bằng nhau suy ra các cạnh và các góc bằng nhau đúng thứ tự tương ứng. + Ngược lại, khi viết kí hiệu tam giác bằng nhau lưu ý kiểm tra lại xem các góc hay cạnh tương ứng đã bằng nhau thỏa mãn yêu cầu đề bài chưa. Dạng 2 . Biết hai tam giác bằng nhau và một số điều kiện, tính số đo góc, độ dài cạnh của tam giác. + Từ kí hiệu tam giác bằng nhau suy ra các cạnh và các góc tương ứng bằng nhau. + Lưu ý các bài toán: tổng – hiệu, tổng – tỉ, hiệu – tỉ. + Sử dụng định lí tổng ba góc trong một tam giác. Dạng 3 . Chứng minh hai tam giác bằng nhau theo trường hợp bằng nhau thứ nhất. Từ đó chứng minh các bài toán liên quan: hai đoạn thẳng bằng nhau, hai góc bằng nhau, hai đường thẳng song song – vuông góc, đường phân giác, ba điểm thẳng hàng. + Chỉ ra các tam giác có ba cạnh bằng nhau để suy ra tam giác bằng nhau. + Từ tam giác bằng nhau suy ra các cặp cạnh tương ứng bằng nhau, cặp góc tương ứng bằng nhau. + Nắm vững các khái niệm: tia phân giác của góc, đường cao của tam giác, đường trung trực của đoạn thẳng, hai đường thẳng song song, hai đường thẳng vuông góc; nắm vững định lí tổng ba góc trong một tam giác, tiên đề Ơ clit để giải các bài toán chứng minh. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề tổng các góc trong một tam giác Toán 7
Tài liệu gồm 22 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tổng các góc trong một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Tính số đo góc của một tam giác. – Lập các đẳng thức thể hiện: + Tổng ba góc của tam giác bằng 180 độ. + Trong tam giác vuông, hai góc nhọn phụ nhau. + Góc ngoài của tam giác bằng tổng hai góc trong không kề với nó. – Sau đó tính số đo góc phải tìm. Dạng 2. Các dạng bài toán chứng minh. – Sử dụng các tính chất trong phần kiến thức cần nhớ. – Lưu ý thêm về các tính chất đã học về quan hệ song song, vuông góc, tia phân giác góc. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề định lí và chứng minh định lí Toán 7
Tài liệu gồm 19 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề định lí và chứng minh định lí trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. 1. Định lí. Giả thiết và kết luận của định lí: – Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng: “Nếu … thì …”. – Phần giữa từ “nếu” và từ “thì” là giả thiết của định lí. – Phần sau từ “thì” là kết luận của định lí. 2. Thế nào là chứng minh định lí? – Chứng minh một định lí là dùng lập luận để từ giả thiết và những khẳng định đúng đã biết để suy ra kết luận của định lí. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Xác định giả thiết và kết luận của định lí. – Mỗi định lí thường được phát biểu dưới dạng: “Nếu … thì …”. – Phần giữa từ “nếu” và từ “thì” là giả thiết của định lí. – Phần sau từ “thì” là kết luận của định lí. Dạng 2. Chứng minh định lí. – Chứng minh một định lí là dùng lập luận để từ giả thiết và những khẳng định đúng đã biết để suy ra kết luận của định lí. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề tiên đề Euclid, tính chất của hai đường thẳng song song Toán 7
Tài liệu gồm 40 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tiên đề Euclid, tính chất của hai đường thẳng song song trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Tính số đo góc. + Dựa vào tính chất hai đường thẳng song song. Nếu biết số đo của một góc thì tính được số đo của góc kia. Dạng 2. Chứng minh hai đường thẳng song song, vuông góc. – Chứng minh hai đường thẳng song song: + Dựa vào dấu hiệu nhận biết hai đường thẳng song song. + Dựa vào tiên đề Euclid. + Dựa vào dấu hiệu: cùng vuông góc, cùng song song với đường thẳng thứ ba. – Chứng minh hai đường thẳng vuông góc: + Dựa vào dấu hiệu: Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia. + Dựa vào dấu hiệu: Hai đường thẳng cắt nhau trong bốn góc tạo thành có một góc vuông. PHẦN III . BÀI TẬP TƯƠNG TỰ LUYỆN.