Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 2 Toán 9 năm 2019 - 2020 trường THCS Nguyễn Du - TP HCM

Thứ Ba ngày 02 tháng 06 năm 2020, trường THCS Nguyễn Du, quận 1, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 9 giai đoạn cuối học kỳ 2 (HK2) năm học 2019 – 2020. Đề thi học kỳ 2 Toán 9 năm 2019 – 2020 trường THCS Nguyễn Du – TP HCM gồm 01 trang với 06 bài toán tự luận, thời gian làm bài thi là 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2019 – 2020 trường THCS Nguyễn Du – TP HCM : + Hai trường THCS A và B có tất cả 1250 thí sinh dự thi vào lớp 10 THPT. Biết rằng nếu tỉ lệ trúng tuyển vào lớp 10 của trường A và trường B lần lượt là 80% và 85% thì trường A trúng tuyển nhiều hơn trường B là 10 thí sinh. Tính số thí sinh dự thi vào lớp 10 THPT của mỗi trường. [ads] + Đổ nước vào một chiếc thùng hình trụ có bán kính 20cm. Nếu nghiêng thùng sao cho mặt nước chạm miệng thùng và đáy thùng (như hình vẽ) thì mặt nước tạo với đáy thùng một góc ACB = 45°. Em hãy cho biết diện tích xung quanh và thể tích của thùng (thể tích tính theo lít) (biết hình trụ có bán kính đáy là R, chiều cao h thì diện tích xung quanh được tính bởi công thức Sxq = 2Rh và thể tích V được tính bởi công thức V = piR^2h với pi = 3,14). + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. a. Chứng minh rằng các tứ giác BFEC, CEHD nội tiếp đường tròn. b. Đường thẳng EF cắt đường tròn (O) tại các điểm I, K (I thuộc cung nhỏ AB). Gọi xy là tiếp tuyến tại A của đường tròn (O). Chứng minh: OA vuông góc với IK và AK^2 = AE.AC. c. Gọi S là tâm đường tròn ngoại tiếp tứ giác BFEC. Qua S vẽ đường vuông góc với HS, đường thẳng này cắt các đường thẳng AB, AH, AC lần lượt tại P, G và Q. Chứng minh: G là trung điểm của PQ.

Nguồn: toanmath.com

Đọc Sách

Đề thi cuối kỳ 2 Toán 9 năm 2020 - 2021 phòng GDĐT Long Biên - Hà Nội
Đề thi cuối kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Long Biên – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào thứ Sáu ngày 16 tháng 04 năm 2021. Trích dẫn đề thi cuối kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Long Biên – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc lập hệ phương trình: Đáp ứng nhu cầu vận chuyển hàng hóa cho người dân trong đợt dịch Covid-19 vừa qua, một tàu thủy chở hàng đi từ bến A đến bến B, rồi quay lại bến A. Thời gian cả đi và về là 2 giờ 30 phút (không tính thời gian nghỉ). Hãy tìm vận tốc của tàu thủy trong nước yên lặng, biết rằng khoảng cách giữa hai bến sông A và B là 24 km và vận tốc của nước chảy là 4 km/h. + Vẽ đồ thị của hàm số y = -2×2. + Cho phương trình x + (1 – m)x – m = 0 (với x là ẩn số, m là tham số). Xác định các giá trị của m để phương trình có hai nghiện phân biệt thoả mãn điều kiện.
Đề thi học kỳ 2 Toán 9 năm 2020 - 2021 phòng GDĐT Cầu Giấy - Hà Nội
Sáng thứ Sáu ngày 16 tháng 04 năm 2021, phòng Giáo dục và Đào tạo quận Cầu Giấy, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 9 giai đoạn cuối học kì 2 năm học 2020 – 2021. Đề thi học kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Cầu Giấy – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thơi gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Cầu Giấy – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Trong kì thi tuyển sinh vào lớp 10, hai trường A và B có tất cả 750 học sinh dự thi. Trong số học sinh trường A dự thi có 80% số học sinh trúng tuyển, còn trong số học sinh trường B dự thi có 70% số học sinh trúng tuyển. Biết tổng số học sinh trúng tuyển của cả hai trường là 560 học sinh. Tính số học sinh dự thi của mỗi trường? + Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x – m2 + 2m (m là tham số). a. Tìm tọa độ giao điểm của parabol (P) và đường thẳng (d) khi m = 2. b. Tìm m để đường thẳng (d) và parabol (P) cắt nhau tại hai điểm phân biệt có hoành độ x1; x2 là hai số đối nhau. + Cho nửa tròn (O; R) đường kính AB và điểm M thuộc nửa đường tròn đó (M khác A và B). Trên dây BM lấy điểm N (N khác B và M), tia AN cắt nửa đường tròn (O) tại điểm thứ hai là P. Tia AM và tia BP cắt nhau tại Q. 1) Chứng minh: bốn điểm M, N, P, Q cùng thuộc một đường tròn. 2) Chứng minh: MAB và MNQ đồng dạng. 3) Chứng minh MO là tiếp tuyến của đường tròn ngoại tiếp tam giác MNQ. 4) Dựng hình bình hành ANBC. Chứng minh QB = QC.sin QPM.
Đề thi học kỳ 2 Toán 9 năm 2020 - 2021 phòng GDĐT Đống Đa - Hà Nội
Đề thi học kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Đống Đa – Hà Nội có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Đống Đa – Hà Nội : + Giải toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh đất hình chữ nhật có chiều dài lớn hơn chiều rộng 3m. Nếu tăng chiều dài thêm 2m và giảm chiều rộng 1m thì diện tích mảnh đất không đổi. Tính chiều dài và chiều rộng ban đầu của mảnh đất. + Một hình trụ có đường kính đáy là 1,2m và chiều cao là 1,8m. Tính thể tích hình trụ đó (kết quả làm tròn đến số thập phân thứ nhất, lấy π ≈ 3,14). + Cho phương trình: x2 – 2x + m – 3 = 0 (m là tham số). 1) Giải phương trình khi m = -5. 2) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện x1 = 3×2.
Đề thi học kì 2 Toán 9 năm 2020 - 2021 trường M.V. Lômônôxốp - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 2 Toán 9 năm 2020 – 2021 trường M.V. Lômônôxốp – Hà Nội. Trích dẫn đề thi học kì 2 Toán 9 năm 2020 – 2021 trường M.V. Lômônôxốp – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một xưởng may dự định may xong 1400 chiếc áo trong một thời gian quy định. Nhờ cải tiến kĩ thuật, mỗi ngày xưởng đã may thêm 5 chiếc áo so với số áo phải may trong một ngày theo kế hoạch. Vì thế, xưởng đã hoàn thành kế hoạch sớm hơn 5 ngày so với quy định. Hỏi theo kế hoạch, mỗi ngày xưởng phải may xong bao nhiêu chiếc áo? + Kim phút của một đồng hồ treo tường có độ dài là 16 cm. Hỏi trong 20 phút thì đầu kim phút vạch được một cung tròn có độ dài bằng bao nhiêu cm? + Tìm tọa độ giao điểm của parabol (P): y = x^2 và đường thẳng (d): y = 3x + 4.