Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lục Ngạn Bắc Giang

Nội dung Đề HSG cấp huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lục Ngạn Bắc Giang Bản PDF - Nội dung bài viết Đề Thi HSG Cấp Huyện Lớp 7 Môn Toán Năm 2022 - 2023 Phòng GD&ĐT Lục Ngạn Bắc Giang Đề Thi HSG Cấp Huyện Lớp 7 Môn Toán Năm 2022 - 2023 Phòng GD&ĐT Lục Ngạn Bắc Giang Xin chào quý thầy cô và các em học sinh lớp 7! Dưới đây là đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán lớp 7 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang tổ chức. Kỳ thi sẽ diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Hãy cùng xem qua một số câu hỏi trong đề thi nhé: Cho một nhóm Địa y phát triển trên một khoảng đất hình tròn và có mối quan hệ giữa đường kính d (tính bằng mi-li-mét) của hình tròn đó và tuổi r của Địa y theo công thức: d = 7t − 12 (với t ≥ 12). Biết vào năm 2022, đường kính của một nhóm Địa y là 42mm, hãy tính xem băng trên dòng sông đó đã tan vào năm nào? Trong tam giác vuông cân MNP ở M, A là trung điểm của NP. Điểm B nằm giữa hai điểm A và P. Kẻ NH và PK vuông góc với MB lần lượt tại H và K. Hãy chứng minh rằng HMN = KPM và MAP là tam giác cân với AH vuông góc AK. Một bể cá hình hộp chữ nhật có chiều dài 60cm, chiều rộng 25cm và chiều cao 50 cm. Để nuôi cá người ta đổ 45 lít nước và một tiểu cảnh bằng đá vào bể. Biết khi đó chiều cao mực nước trong bể là 34 cm. Hãy tính thể tích của tiểu cảnh đó. Hy vọng rằng các em sẽ làm tốt các câu hỏi trong đề thi này. Chúc các em học tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An.
Đề thi HSG cấp trường Toán 7 năm 2020 - 2021 trường THCS Cẩm Bình - Hà Tĩnh
Đề thi HSG cấp trường Toán 7 năm 2020 – 2021 trường THCS Cẩm Bình – Hà Tĩnh gồm 10 câu dạng ghi kết quả và 01 câu tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG cấp trường Toán 7 năm 2020 – 2021 trường THCS Cẩm Bình – Hà Tĩnh : + Tam giác ABC có các tia phân giác của góc B và góc C cắt nhau tại O. Tính số đo của góc A biết BOC = 120°. + Tìm số có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với ba số 1, 2 và 3. + Cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD. a) Chứng minh ABE = ADC. b) Tính số đo góc BIC.
Đề thi học sinh giỏi Toán 7 năm 2020 - 2021 phòng GDĐT Trực Ninh - Nam Định
Đề thi học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định được biên soạn theo hình thức đề thi 100% tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định : + Cho ABC vuông tại A có B 2C. Kẻ AH BC (H BC). Trên tia HC lấy D sao cho HD HB. Từ C kẻ đường thẳng CE vuông góc với đường thẳng AD (E AD). a) Tam giác ABD là tam giác gì? Vì sao? b) Chứng minh DH DE HE AC. c) So sánh 2 HE và 2 2 4 BC AD. d) Gọi K giao AH và CE, lấy điểm I bất kì thuộc đoạn thẳng HE I khác H; I khác E. Chứng minh 3 2 AC IA IK IC. + Chứng minh đa thức sau không có nghiệm. + Chứng minh rằng 2021 10 539 9 có giá trị là một số tự nhiên.
Đề thi HSG Toán 7 năm 2020 - 2021 trường THCS Kim Đồng - Quảng Nam
Ngày … tháng … năm 2021, trường THCS Kim Đồng, thành phố Hội An, tỉnh Quảng Nam tổ chức kỳ thi khảo sát học sinh giỏi lớp 7 môn Toán năm học 2020 – 2021. Đề thi HSG Toán 7 năm 2020 – 2021 trường THCS Kim Đồng – Quảng Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút.