Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề bội chung và bội chung nhỏ nhất

Nội dung Chuyên đề bội chung và bội chung nhỏ nhất Bản PDF - Nội dung bài viết Chuyên đề bội chung và bội chung nhỏ nhất Chuyên đề bội chung và bội chung nhỏ nhất Tài liệu này bao gồm 12 trang, cung cấp kiến thức về bội chung và bội chung nhỏ nhất của hai hay nhiều số. Nội dung tập trung vào lý thuyết cơ bản, các dạng toán và bài tập thực hành. Đi kèm là đáp án và lời giải chi tiết, giúp học sinh lớp 6 học tập môn Toán một cách hiệu quả. Trước hết, chúng ta cần hiểu khái niệm bội chung và bội chung nhỏ nhất của hai hay nhiều số. Bội chung là tổ hợp của tất cả các số đó. Bội chung nhỏ nhất là số nhỏ nhất trong tập hợp các bội chung của các số đó. Để tìm bội chung nhỏ nhất, ta cần phân tích các số ra thừa số nguyên tố, chọn ra các thừa số chung và riêng, sau đó lập tích các thừa số với số mũ lớn nhất của nó. Kết quả là bội chung nhỏ nhất cần tìm. Thông qua việc tìm bội chung nhỏ nhất, chúng ta có thể dễ dàng tìm bội chung của các số đã cho. Ngoài ra, quen biết với các dạng bài tập về bội chung và bội chung nhỏ nhất giúp học sinh vận dụng kiến thức vào thực tế một cách linh hoạt và hiệu quả. Trên cơ sở lí thuyết và thực hành này, học sinh sẽ phát triển kiến thức vững chắc về bội chung và bội chung nhỏ nhất, từ đó năng động giải quyết các bài toán liên quan đến chương trình Toán lớp 6. Với sự hỗ trợ từ tài liệu này, việc ôn tập và bổ túc ở mức độ cao hơn sẽ trở nên dễ dàng và hiệu quả hơn bao giờ hết.

Nguồn: sytu.vn

Đọc Sách

Tài liệu dạy thêm - học thêm chuyên đề hình bình hành, hình thoi
Tài liệu gồm 13 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề hình bình hành, hình thoi, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. A. Hình bình hành Dạng 1. Nhận biết hình bình hành. Các dấu hiệu nhận biết hình bình hành: 1. Tứ giác có các cạnh đối song song là hình bình hành. 2. Tứ giác có các cạnh đối bằng nhau là hình bình hành. 3. Tứ giác có một cặp cạnh đối vừa song song vừa bằng nhau là hình bình hành. 4. Tứ giác có các góc đối bằng nhau là hình bình hành. 5. Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành. Dạng 2. Cách vẽ hình bình hành. Dựa vào các tính chất của hình bình hành để vẽ hình bình hành. Dạng 3. Tính chu vi và diện tích hình bình hành. Dựa vào công thức tính chu vi và diện tích hình bình hành; mối quan hệ giữa các cạnh của hình bình hành. B. Hình thoi Dạng 1. Nhận biết hình thoi. Các dấu hiệu nhận biết hình thoi: 1. Tứ giác có bốn cạnh bằng nhau là hình thoi. 2. Hình bình hành có hai cạnh kề bằng nhau là hình thoi. 3. Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi. 4. Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi. Dạng 2. Cách vẽ hình thoi. Dựa vào các tính chất của hình thoi để vẽ hình bình thoi. Dạng 3. Tính chu vi và diện tích hình thoi. Dựa vào công thức tính chu vi và diện tích hình thoi; mối quan hệ giữa các cạnh của hình thoi.
Tài liệu dạy thêm - học thêm chuyên đề hình vuông, hình chữ nhật, hình thang
Tài liệu gồm 17 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề hình vuông, hình chữ nhật, hình thang, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. A – HÌNH VUÔNG. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Nhận biết hình vuông. Dựa vào định nghĩa hình vuông, nhận biết được hình nào là hình vuông. Dạng 2. Vẽ hình vuông. Vẽ hình vuông dựa vào định nghĩa. Dạng 3. Diện tích hình vuông. Từ công thức tính diện tích hình vuông, tính diện tích hình vuông khi biết các yếu tố hoặc tìm yếu tố nào đó khi biết diện tích hình vuông. Dạng 4. Bài toán liên quan đến hình vuông. B – HÌNH CHỮ NHẬT. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Nhận biết hình chữ nhật. Dựa vào định nghĩa hình chữ nhật, nhận biết được hình nào là hình chữ nhật. Dạng 2. Vẽ hình chữ nhật. Vẽ hình thang trên giấy kẻ ô vuông với các số đo cho trước. Dạng 3. Diện tích hình chữ nhật. Từ công thức tính diện tích hình chữ nhật, tính diện tích hình chữ nhật khi biết các yếu tố hoặc tìm yếu tố nào đó khi biết diện tích hình chữ nhật. Dạng 4. Bài toán liên quan đến hình chữ nhật. C – HÌNH THANG. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Nhận biết hình thang. Dựa vào định nghĩa hình thang, nhận biết được hình nào là hình thang. Dạng 2. Vẽ hình thang. Vẽ hình thang trên giấy kẻ ô vuông với các số đo cho trước. Dạng 3. Diện tích hình thang. Từ công thức tính diện tích hình thang, tính diện tích hình thang khi biết các yếu tố hoặc tìm yếu tố nào đó khi biết diện tích hình thang. Dạng 4. Bài toán liên quan đến hình thang. Từ công thức tính diện tích, chu vi hình thang, tính diện tích hình thang khi biết các yếu tố hoặc tìm yếu tố nào đó khi biết diện tích hình thang.
Tài liệu dạy thêm - học thêm chuyên đề xác suất thực nghiệm
Tài liệu gồm 08 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề xác suất thực nghiệm, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I : TÓM TẮT LÍ THUYẾT. PHẦN II : CÁC DẠNG BÀI. Dạng 1 . Liệt kê các kết quả có thể xảy ra của phép thử, số phần tử của tập hợp. Liệt kê là thực hiện các hoạt động của phép thử, để tìm các khả năng có thể xảy ra. Tập hợp tất cả các kết quả có thể xảy ra được viết dạng X a a a a 1 2 3 n. Số phần tử của tập hợp có thể kiểm đếm hoặc dùng một quy tắc. Dạng 2 . Nhận bết sự kiện liên quan đến phép thử. Một sự kiện A liên quan tới phép thử được mô tả bởi một tập con n (A) nào đó của phép liệt kê các kết quả có thể xảy ra trong phép thử. Sự kiện chắc chắn là sự kiện luôn xảy ra khi thực hiện phép thử. Sự kiện không thể là sự kiện không bao giờ xảy ra khi phép thử được thực hiện. Sự kiện có thể là sự kiện cũng có thể xảy ra khi phép thử được thực hiện. Dạng 3 . Tính xác xuất thực nghiệm. Công thức tính xác suất thực nghiệm: Thực hiện lặp đi lặp lại một hoạt động nào đó n lần. Gọi n A là số lần sự kiện A xảy ra trong n lần đó. p(A) = số lần sự kiện A xảy ra / tổng số lần thực hiện hoạt động. (P A được gọi là xác suất thực nghiệm của sự kiện A sau n hoạt động vừa thực hiện).
Tài liệu dạy thêm - học thêm chuyên đề bảng thống kê và các dạng biểu đồ
Tài liệu gồm 26 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề bảng thống kê và các dạng biểu đồ, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. DẠNG 1 : Thu thập và phân loại dữ liệu. – Để đánh giá tính hợp lý của dữ liệu ta cần đưa ra các tiêu chí đánh giá, ví dụ như dữ liệu phải: + Đúng định dạng. + Nằm trong phạm vi dự kiến. – Cách phân loại dữ liệu: Những dữ liệu dưới dạng số được gọi là số liệu. DẠNG 2 : Biểu diễn dữ liệu trên bảng. Bảng số liệu (có 2 dòng): + Các đối tượng thống kê biểu diễn ở dòng đầu tiên. + Ứng với mỗi đối tượng thống kê có một số liệu thống kê theo tiêu chí, lần lượt biểu diễn ở dòng thứ hai (theo cột tương ứng). DẠNG 3 : Vẽ biểu đồ tranh và phân tích số liệu liên quan. Dựa vào số liệu cho trước, lựa chọn mỗi biểu tượng tranh ảnh tượng trưng cho một số cụ thể, biểu diễn các số liệu thống kê theo biểu tượng tranh ảnh. Dựa vào biểu đồ tranh, xác định được số liệu thống kê và biết nhận xét các vấn đề liên quan đến biểu đồ tranh. DẠNG 4 : Biểu đồ cột, biểu đồ cột kép. Dựa vào bảng thống kê, vẽ được biểu đồ cột (cột kép) tương ứng. Xử lý số liệu liên quan đến biểu đồ tranh để vẽ được biểu đồ cột.