Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề diện tích hình thang

Nội dung Chuyên đề diện tích hình thang Bản PDF - Nội dung bài viết Chuyên đề diện tích hình thang Chuyên đề diện tích hình thang Chuyên đề diện tích hình thang là tài liệu học tập bao gồm 08 trang, được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tài liệu này tóm tắt lý thuyết về trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến diện tích hình thang. Đầu tiên, tài liệu giải thích rằng diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao, cũng như diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó. Trong phần bài tập và các dạng toán, tài liệu cung cấp các bài tập từ cơ bản đến nâng cao về diện tích hình thang. Các dạng bài minh họa bao gồm: tính diện tích hình thang, tính diện tích hình bình hành, tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích, tìm diện tích lớn nhất (nhỏ nhất) của một hình. Để giải các dạng toán này, học sinh sẽ được hướng dẫn cách sử dụng công thức tính diện tích, cũng như áp dụng các phương pháp giải quan trọng như sử dụng tính chất đường vuông góc ngắn hcm đường xiên. Ngoài ra, tài liệu còn cung cấp phiếu bài tự luyện để học sinh có thể tự rèn luyện và kiểm tra kiến thức của mình trong chuyên đề diện tích hình thang.

Nguồn: sytu.vn

Đọc Sách

Nâng cao và phát triển Toán 8 - Vũ Hữu Bình (Tập 2)
THCS. giới thiệu đến bạn đọc cuốn sách Nâng cao và phát triển Toán 8 (Tập 2) do tác giả Vũ Hữu Bình biên soạn, sách gồm 249 trang nhằm giúp các em học sinh khá giỏi môn Toán 8, thầy cô giáo dạy Toán 8 có một tài liệu tham khảo đào sâu Toán 8 dưới dạng bài tập nâng cao và các chuyên đề có kèm theo bài tập vận dụng.
Nâng cao và phát triển Toán 8 - Vũ Hữu Bình (Tập 1)
THCS. giới thiệu đến bạn đọc cuốn sách Nâng cao và phát triển Toán 8 (Tập 1) do tác giả Vũ Hữu Bình biên soạn, sách gồm 231 trang nhằm giúp các em học sinh khá giỏi môn Toán 8, thầy cô giáo dạy Toán 8 có một tài liệu tham khảo đào sâu Toán 8 dưới dạng bài tập nâng cao và các chuyên đề có kèm theo bài tập vận dụng. Mục lục cuốn sách : PHẦN ĐẠI SỐ CHƯƠNG I – PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC Bài 1. Nhân đa thức. Bài 2. Các hằng đẳng thức đáng nhớ. Bài 3. Phân tích đa thức thành nhân tử. Bài 4. Chia đa thức. CHƯƠNG II – PHÂN THỨC ĐẠI SỐ Bài 5. Tính chất cơ bản của phân thức. Rút gọn phân thức. Bài 6. Các phép tính về phân thức. CHUYÊN ĐỀ Một số phương pháp phân tích đa thức thành nhân tử. Tính chia hết đối với số nguyên. Tính chia hết đối với đa thức. [ads] PHẦN HÌNH HỌC CHƯƠNG I – TỨ GIÁC Bài 1. Tứ giác. Bài 2. Hình thang. Bài 3. Dựng hình bằng thước và compa. Bài 4. Đối xứng trục. Bài 5. Hình bình hành. Bài 6. Đối xứng tâm. Bài 7. Hình chữ nhật. Bài 8. Đường thẳng song song với một đường thẳng cho trước. Bài 9. Hình thoi. Bài 10. Hình vuông. CHƯƠNG II – ĐA GIÁC. DIỆN TÍCH CỦA ĐA GIÁC Bài 11. Đa giác. Bài 12. Diện tích của đa giác. CHUYÊN ĐỀ Tìm tập hợp điểm. Sử dụng công thức diện tích để thiết lập quan hệ về độ dài của các đoạn thẳng.
Đề cương ôn tập HK2 Toán 8 năm 2017 - 2018 trường Ngô Sĩ Liên - Hà Nội
Đề cương ôn tập HK2 Toán 8 năm học 2017 – 2018 trường THCS Ngô Sĩ Liên – Hà Nội gồm 43 trang tuyển chọn các bài toán lớp 8 giai đoạn học kỳ 2 điển hình nhằm giúp học sinh tự ôn để chuẩn bị cho kỳ thi HK2 Toán 8, các bài toán có lời giải chi tiết . Các dạng toán trong đề cương gồm : + Dạng 1: Rút gọn biểu thức + Dạng 2: Phương trình và bất phương trình + Dạng 3: Giải bài toán bằng cách lập phương trình + Dạng 4: Bài tập hình học + Dạng 5: Một số bài tập nâng cao
Đề cương Toán 8 HK2 năm học 2017 - 2018 trường THCS Lý Thái Tổ - Hà Nội
Đề cương Toán 8 HK2 năm học 2017 – 2018 trường THCS Lý Thái Tổ – Hà Nội gồm 8 trang tuyển chọn các bài toán tiêu biểu giúp học sinh ôn tập, chuẩn bị cho kỳ thi học kỳ 2 Toán 8 sắp tới. A. LÝ THUYẾT Nội dung trọng tâm trong chương trình Toán 8 HK2 học sinh cần nắm: I. ĐẠI SỐ – Biến đổi các biểu thức hữu tỉ, giá trị của phân thức. – Phương trình bậc nhất một ẩn, phương trình đưa về dạng ax + b = 0. – Phương pháp giải phương trình tích, phương trình chứa ẩn ở mẫu. – Các bước giải bài toán bằng cách lập phương trình. – Liên hệ giưa thứ tự và phép cộng, phép nhân. – Định nghĩa bất phương trình bậc nhất một ẩn và cách giải. – Cách giải phương trình chứa dấu giá trị tuyệt đối. II. HÌNH HỌC – Định lí Ta – lét (thuận và đảo), hệ quả của định lí Ta-lét. – Tính chất đường phân giác của tam giác. – Các trường hợp đồng dạng của tam giác (c-c-c, c-g-c, g-g). – Các trường hợp đồng dạng của tam giác vuông. B. BÀI TẬP