Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập tỉ số thể tích khối đa diện có lời giải chi tiết

Trong quá trình học chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng) và luyện tập với các đề thi thử THPT Quốc gia môn Toán, chúng ta thường bắt gặp các bài toán vận dụng tính tỉ số thể tích giữa hai khối đa diện. Để giải quyết được dạng toán này, ngoài việc nắm vững công thức tính thể tích các khối đa diện thường gặp, còn phải biết vận dụng các định lí về tỉ số thể tích … trong trường hợp việc tính thể tích khối đa diện là phức tạp hoặc không có đủ giả thiết để tính toán. giới thiệu đến bạn đọc đề bài và lời giải chi tiết 130 bài tập tỉ số thể tích khối đa diện có lời giải chi tiết, với nhiều biến dạng khác nhau, đồ phức tạp khác nhau. Trích dẫn một số bài toán trong tài liệu bài tập tỉ số thể tích khối đa diện có lời giải chi tiết: + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60 độ. Gọi M là điểm đối xứng với C qua D, N là trung điểm của SC, mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Tính tỉ số thể tích giữa hai phần đó. + Trong không gian Oxyz, cho các điểm A, B, C lần lượt thay đổi trên các trục Ox, Oy, Oz và luôn thỏa mãn điều kiện: tỉ số giữa diện tích của tam giác ABC và thể tích khối tứ diện OABC bằng 3/2. Biết rằng mặt phẳng (ABC) luôn tiếp xúc với một mặt cầu cố định, bán kính của mặt cầu đó bằng? [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt đáy. Biết góc giữa hai mặt phẳng (SCD) và (ABCD) bằng 45 độ. Gọi V1, V2 lần lượt là thể tích khối chóp S.AHK và S.ACD với H, K lần lượt là trung điểm của SC và SD. Tính độ dài đường cao của khối chóp S.ABCD và tỉ số k = V1/V2. + Cho khối tứ diện OABC với OA, OB, OC vuông góc từng đôi một và OA = a, OB = 2a, OC = 3a. Gọi M, N lần lượt là trung điểm của hai cạnh AC, BC. Thể tích của khối tứ diện OCMN tính theo a bằng? + Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích 48. Trên các cạnh SA, SB, SC, SD lần lượt lấy các điểm A′, B′, C′ và D′ sao cho SA’/SA = SC’/SC = 1/3 và SB’/SB = SD’/SD = 3/4. Tính thể tích V của khối đa diện lồi S.A’B’C’D’.

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm khối đa diện, mặt nón, mặt trụ và mặt cầu - Trần Đình Cư
Tài liệu tóm tắt lý thuyết, phân dạng, phương pháp giải và bài tập trắc nghiệm các dạng toán về khối đa diện, mặt nón, mặt trụ và mặt cầu. Chương 1. Khối đa diện Bài 1. Khái niệm về khối đa diện Bài 2. Khối đa diện lồi và khối đa diện đều Bài 3. Khái niệm về thể tích khối đa diện Vấn đề 1. Thể tích khối chóp + Dạng 1. Khối chóp có cạnh bên vuông góc đáy + Dạng 2. Khối chóp có hình chiếu của đỉnh lên mặt phẳng đáy + Dạng 3. Khối chóp có mặt bên vuông góc với đáy + Dạng 4. Khối chóp đều + Dạng 5. Tỉ lệ thể tích [ads] Vấn đề 2. Thể tích khối lăng trụ + Dạng 1. Khối lăng trụ đứng + Dạng 2. Khối lăng trụ đều + Dạng 3. Khối lăng trụ xiên Chương 2. Mặt nón, mặt trụ và mặt cầu Bài 1. Khái niệm về mặt tròn xoay Vấn đề 1. Mặt nón, hình nón và khối nón Vấn đề 2. Mặt trụ – hình trụ và khối trụ Bài 2. Mặt cầu + Dạng 1. Hình chóp có các đỉnh nhìn hai đỉnh còn lại dưới 1 góc vuông + Dạng 2. Hình chóp có các cạnh bên bằng nhau + Dạng 3. Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy + Dạng 4. Mặt cầu ngoại tiếp hình chóp có mặt bên vuông góc với mặt đáy
Lý thuyết và bài tập trắc nghiệm chuyên đề khối đa diện - Huỳnh Đức Khánh
Tài liệu gồm 65 trang bao gồm tóm tắt lý thuyết và bài tập trắc nghiệm chọn lọc chuyên đề khối đa diện. Nội dung tài liệu gồm các phần: Bài 01. Khái niệm về khối đa diện I – Khối lăng trụ V1 khối chóp II – Khái niệm về hình đa diện V1 khối đa diện III – Hai đa diện bằng nhau IV – Phân chia V1 lắp ghép các khối đa diện Một số kết quản quan trọng Câu hỏi trắc nghiệm Bài 02. Khối đa diện lồi và khối đa diện đều I – Khối đa diện lồi II – Khối đa diện đều Câu hỏi trắc nghiệm [ads] Bài 03. Khái niệm về thể tích khối đa diện I – Nhắc lại một số định nghĩa II – Thể tích III – Tỉ số thể tích Câu hỏi trắc nghiệm + Vấn đề 1. Thể tích khối chóp + Vấn đề 2. Thể tích lăng trụ đứng + Vấn đề 3. Thể tích lăng trụ xiên + Vấn đề 4. Tỉ số thể tích
Bài tập trắc nghiệm hình học không gian - Lê Viết Nhơn
Tài liệu gồm 68 trang tuyển tập các bài toán trắc nghiệm chuyên đề hình học không gian. Nội dung tài liệu gồm 2 chương: Chương I. Khối đa diện – thể tích khối đa diện Bài 1. Góc_khoảng cách Bài 2. Khối đa diện Bài 3. Thể tích Bài tập trắc nghiệm Phần 1. Khối đa diện Phần 2. Thể tích Phần 3. Tỷ số thể tích Phần 4. Góc – khoảng cách Phần 5. Mặt cầu ngoại tiếp khối đa diện Chương II. Mặt nón – mặt trụ – mặt cầu Phần 6. Mặt nón Phần 7. Mặt trụ Phần 8. Mặt cầu [ads] Trích dẫn tài liệu : + Từ một mảnh giấy hình vuông cạnh là 4cm, người ta gấp nó thành bốn phần đều nhau rồi dựng lên thành bốn mặt xung quanh của hình hình lăng trụ tứ giác đều như hình vẽ. Hỏi thể tích của khối lăng trụ này là bao nhiêu. + Khối lăng trụ ABC.A’B’C’ có đáy là một tam giác đều cạnh a, góc giữa cạnh bên và mặt phẳng đáy bằng 30 độ. Hình chiếu của đỉnh A’ trên mặt phẳng đáy (ABC) trùng với trung điểm của cạnh BC. Tính thể tích của khối lăng trụ đã cho. + Người ta cắt miếng bìa hình tam giác cạnh bằng 10cm như hình bên và gấp theo các đường kẻ, sau đó dán các mép lại để được hình tứ diện đều. Tính thể tích của khối tứ diện tạo thành.
Lý thuyết và một số bài tập cơ bản về thể tích khối đa diện - Lê Bá Bảo
Tài liệu gồm 32 trang tổng hợp lý thuyết, công thức giải và một số bài tập thể tích khối đa diện có lời giải chi tiết tương tự các bài toán trong đề minh họa lần 3 của Bộ GD và ĐT. A. Lý thuyết Phần 1. Khối đa diện, tính chất và cách dựng Nêu khái niệm, hình dạng và tính chất của các khối hình: tứ diện, hình chóp, hình lăng trụ, hình hộp, hình chóp tam giác đều, hình chóp tứ giác đều, hình lăng trụ đứng, hình hộp đứng, hình hộp chữ nhật, hình lập phương. [ads] Phần 2. Kỹ năng góc và khoảng cách Nắm vững kỹ năng xác định góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng. Kỹ năng xác định khoảng cách từ một điểm đến đường thẳng, khoảng cách từ điểm đến mặt phẳng, khoảng cách giữa hai đường thẳng chéo nhau. Phần 3. Các kết quả và tính chất quan trọng cần lưu ý Các hệ quả rút ra hỗ trợ cho việc giải toán về thể tích khối đa diện B. Bài tập trắc nghiệm thể tích khối đa diện có đáp án và lời giải chi tiết