Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề phép toán cộng, trừ, nhân, chia phân số

Nội dung Tài liệu dạy thêm học thêm chuyên đề phép toán cộng, trừ, nhân, chia phân số Bản PDF Tài liệu dạy thêm học thêm chuyên đề phép toán cộng, trừ, nhân, chia phân số là một tài liệu hữu ích giúp giáo viên và học sinh lớp 6 trong quá trình dạy và học môn Toán. Tài liệu này bao gồm 22 trang, tổng hợp và tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề phép toán cộng, trừ, nhân, chia phân số.

Phần I của tài liệu là Tóm tắt Lý thuyết, trong đó tập trung đề cập các kiến thức cơ bản về phép toán cộng, trừ, nhân, chia phân số. Phần này giúp học sinh nắm được lý thuyết và các quy tắc cơ bản để áp dụng vào giải các bài toán liên quan.

Phần II của tài liệu là Các dạng bài, bao gồm các dạng bài tập phân số khác nhau. Dạng bài 1 là phép cộng các phân số, trong đó giới thiệu cách cộng hai phân số có cùng mẫu số và hai phân số không cùng mẫu số. Dạng bài 2 là phép trừ các phân số, giới thiệu cách trừ một phân số cho một phân số bằng cách cộng số bị trừ với số đối của số trừ. Dạng bài 3 là phép nhân, chia các phân số, trong đó giới thiệu cách rút gọn các phân số, áp dụng quy tắc nhân, chia phân số và các tính chất cơ bản của phép nhân phân số. Dạng bài 4 là viết một phân số dưới dạng tích, thương của hai phân số và cách giải bài toán liên quan. Dạng bài 5 là bài toán tổng hợp, đòi hỏi học sinh áp dụng các phép toán cộng, trừ, nhân, chia phân số để tính giá trị của biểu thức.

Tài liệu còn đưa ra các phương pháp giải và gợi ý căn cứ vào các đề bài. Ngoài ra, tài liệu còn chú trọng vào việc nhắc nhở học sinh về thứ tự thực hiện các phép tính trong biểu thức cũng như các tính chất cơ bản của phép nhân phân số. Ngoài ra, tài liệu còn giúp học sinh làm quen với các bài toán tổng hợp, đòi hỏi sự kết hợp và ứng dụng linh hoạt của các phép toán cộng, trừ, nhân, chia phân số.

Tài liệu được cung cấp dưới dạng file WORD để tiện lợi và thuận tiện cho giáo viên trong việc sử dụng và chỉnh sửa theo nhu cầu của mình.

Tổng kết lại, tài liệu này là một nguồn tài nguyên hữu ích giúp giáo viên và học sinh lớp 6 nắm vững kiến thức và kỹ năng về phép toán cộng, trừ, nhân, chia phân số. Cùng với đó, tài liệu còn cung cấp các phương pháp giải và gợi ý căn cứ vào đề bài, giúp học sinh rèn luyện và nâng cao khả năng giải toán.

Nguồn: sytu.vn

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề quy tắc dấu ngoặc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề quy tắc dấu ngoặc, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Lý thuyết. QUY TẮC DẤU NGOẶC: – Khi bỏ dấu ngoặc có dấu “+” đằng trước, ta giữ nguyên dấu của các số hạng trong ngoặc. – Khi bỏ dấu ngoặc có dấu “-” đằng trước ta phải đổi dấu tất cả các số hạng trong ngoặc: dấu “+” đổi thành “-” và dấu “-” đổi thành “-”. LƯU Ý: Một dãy các phép tính cộng, trừ các số nguyên cũng được gọi là một tổng. Áp dụng các tính chất giao hoán, kết hợp và quy tắc dấu ngoặc, trong một biểu thức, ta có thể: + Thay đổi tuỳ ý vị trí của các số hạng kèm theo dấu của chúng. + Đặt dấu ngoặc để nhóm các số hạng một cách tuỳ ý. Nếu trước dấu ngoặc là dấu “-” thì phải đổi dấu tất cả các số hạng trong ngoặc. 2. Các dạng toán thường gặp. a) Dạng 1: Thực hiện phép tính. Phương pháp: Bỏ dấu ngoặc theo quy tắc rồi tính. b) Dạng 2: Tìm x. Phương pháp: Rút gọn, xác định vai trò của x trong phép toán. B. BÀI TẬP
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép cộng và phép trừ số nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép cộng và phép trừ số nguyên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Quy tắc cộng và trừ hai số nguyên. * Quy tắc cộng hai số nguyên được xác định như sau: + Cộng hai số nguyên dương chính là cộng hai số tự nhiên khác 0. + Muốn cộng hai số nguyên âm: Bước 1: Bỏ dấu “-” trước mỗi số. Bước 2: Tính tổng của hai số nhận được ở Bước 01. Bước 3: Thêm dấu “-” trước tổng nhận được ở Bước 2, ta có tổng cần tìm. + Hai số nguyên đối nhau có tổng bằng 0. + Muốn cộng hai số nguyên khác dấu: Bước 1: Bỏ dấu “-” trước số nguyên âm, giữ nguyên số còn lại. Bước 2: Trong hai số nguyên dương nhận được ở Bước 1, ta lấy số lớn hơn trừ đi số nhỏ hơn. Bước 3: Cho hiệu vừa nhận được dấu ban đầu của số lớn hơn ở Bước 2, ta có tổng cần tìm. * Quy tắc trừ hai số nguyên được xác định như sau: Muốn trừ số nguyên a cho số nguyên b, ta cộng a với số đối của b. 2. Tính chất. Phép cộng số nguyên có các tính chất sau: • Giao hoán: a + b = b + a. • Kết hợp: (a + b) + c = a + (b + c). • Cộng với số 0: a + 0 = 0 + a = a. • Cộng với số đối: a + (- a) = (- a) + a = 0. 3. Các dạng toán thường gặp. 1. Dạng 1: Cộng trừ hai số nguyên. 2. Dạng 2: Tìm số chưa biết. 3. Dạng 3: Toán có lời văn. B. BÀI TẬP Dạng 1: Cộng trừ hai số nguyên. Phương pháp giải: + Sử dụng quy tắc cộng, trừ hai số nguyên. + Tính chất phép cộng số nguyên. + Thứ tự thực hiện phép tính. + Quan sát, tính nhanh nếu có thể. Thường hay sử dụng tính chất giao hoán, kết hợp, cộng với số đối, cũng có khi cộng các số dương với nhau, cộng các số âm với nhau. Dạng 2: Tìm số chưa biết. + Xét xem: Điều cần tìm đóng vai trò là gì trong phép toán (số hạng, số trừ, số bị trừ). (Số hạng) = (Tổng) – (Số hạng đã biết). (Số trừ) = (Số bị trừ) – (Hiệu). (Số bị trừ) = (Hiệu) + (Số trừ). + Chú ý thứ thứ tự trong tập hợp số nguyên và cách tính tổng cách đều. Dạng 3: Toán có nội dung thực tế. Căn cứ vào nội dung bài toán để đưa về phép cộng, trừ các số nguyên cùng dấu hoặc khác dấu.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp các số nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp các số nguyên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Số nguyên âm, số nguyên dương, tập hợp các số nguyên. – Các số tự nhiên (khác 0): 1, 2, 3, 4, 5 … được gọi là các số nguyên dương. – Các số -1, -2, -3 …. gọi là các số nguyên âm. – Tập hợp các số nguyên gồm các số nguyên âm, số 0 và các số nguyên dương. Kí hiệu là tập Z. Chú ý: – Số 0 không là số nguyên âm cũng không là số nguyên dương. – Đôi khi ta còn viết dấu “+” ngay trước số nguyên dương. Ví dụ số 6 còn được viết +6 (đọc là dương sáu). 2. Thứ tự trong tập số nguyên. a. Trục số. – Ta biểu diễn các số 1, 2, 3 …. và các số nguyên âm -1, -2, -3 … khi đó ta được một trục số gốc O (Hình 1). – Chiều từ trái sang phải là chiều dương, chiều ngược lại là chiều âm. – Điểm biểu diễn số nguyên a gọi là điểm a. – Cho hai số nguyên a, b. Trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b, hay a b. Chú ý : Có thể có hình vẽ như Hình 2. b. Thứ tự các số nguyên. – Mọi số nguyên âm đều nhỏ hơn 0, do đó đều nhỏ hơn mọi số nguyên dương. – Nếu a và b là hai số nguyên dương và a b thì a b. Chú ý: Kí hiệu a b có nghĩa là “a b hoặc a b”. B. BÀI TẬP TRẮC NGHIỆM I. MỨC ĐỘ NHẬN BIẾT. II. MỨC ĐỘ THÔNG HIỂU. III. MỨC ĐỘ VẬN DỤNG. IV. MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Bội chung. * Bội chung của hai hay nhiều số là bội của tất cả các số đó. * Kí hiệu tập hợp các bội chung của a và b là BC a b. * Cách tìm bội chung của hai số a và b: Viết tập hợp các bội của a và bội của b B a B b. Tìm những phần tử chung của B a và B b. 2. Bội chung nhỏ nhất. * Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó. * Bội chung nhỏ nhất của a và b kí hiệu là BC a b. * Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau: Bước 1: Phân tích mỗi số ra thừa số nguyên tố. Bước 2: Chọn ra các thừa số nguyên tố chung và riêng. Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. * Muốn tìm bội chung của các số đã cho, ta có thể tìm các bội của BCNN của các số đó. * Chú ý: Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó. Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thì BCNN của các số đã cho chính là số lớn nhất ấy. Tất cả các bội chung của a và b đều là bội của BC a b. Với mọi số tự nhiên a và b (khác 0), ta có: BCNN a a BCNN a b BCNN a b. 3. Các dạng toán thường gặp. Dạng 1. Tìm bội chung, bội chung nhỏ nhất của hai hay nhiều số. * Để nhận biết một số là bội chung của hai số, ta kiểm tra xem số này có chia hết cho hai số đó hay không? * Để viết tập hợp các bội chung của hai hay nhiều số, ta viết tập hợp các bội của mỗi số rồi tìm giao của các tập hợp đó. * Thực hiện quy tắc “ba bước” để tìm BCNN của hai hay nhiều số đó là: Bước 1 : Phân tích mỗi số ra thừa số nguyên tố. Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng. Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. * Có thể nhẩm BCNN của hai hay nhiều số bằng cách nhân số lớn nhất lần lượt với 1 2 3 … cho đến khi được kết quả là một số chia hết cho các số còn lại. Dạng 2. Bài toán đưa về việc tìm BCNN của hai hay nhiều số. Phân tích đề bài, suy luận để đưa về việc tìm BCNN của hai hay nhiều số. Dạng 3. Bài toán đưa về việc tìm bội chung của hai hay nhiều số thỏa mãn điều kiện cho trước. Phân tích đề bài, suy luận để đưa về việc tìm bội chung của hai hay nhiều số cho trước. Tìm BCNN của các số đó. Tìm các bội của BCNN này. Chọn trong số đó các bội thỏa mãn điều kiện đã cho. Dạng 4. Vận dụng BCNN để tìm mẫu chung của hai hay nhiều phân số. Để quy đồng mẫu hai phân số ta phải tìm mẫu chung của hai phân số đó. Thông thường ta nên chọn mẫu chung là BCNN của hai mẫu. B. BÀI TẬP TRẮC NGHIỆM