Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 2 lớp 9 môn Toán năm 2021 2022 trường chuyên Hà Nội Amsterdam

Nội dung Đề khảo sát lần 2 lớp 9 môn Toán năm 2021 2022 trường chuyên Hà Nội Amsterdam Bản PDF - Nội dung bài viết Đề khảo sát lần 2 môn Toán lớp 9 trường chuyên Hà Nội Amsterdam Đề khảo sát lần 2 môn Toán lớp 9 trường chuyên Hà Nội Amsterdam Chào đón quý thầy cô và các em học sinh lớp 9! Đề kiểm tra khảo sát chất lượng lần 2 môn Toán lớp 9 năm học 2021 – 2022 trường chuyên Hà Nội – Amsterdam đã được tổ chức. Đề khảo sát gồm các câu hỏi sau: Cho hai biểu thức A = 3x - 5 và B = 2x + 7. Tính giá trị của biểu thức A khi x = 16. Rút gọn biểu thức B. Tìm tất cả các số thực x sao cho tích của A và B là một số nguyên. Giải bài toán vận tốc: Một người đi xe máy từ A đến B cách nhau 30km với vận tốc dự định. Khi đi từ B trở về A với vận tốc tăng thêm 5km/h, thì thời gian về ít hơn thời gian đi 5 phút. Hãy tính vận tốc dự định của người đó. Tính thể tích của chiếc thùng đựng nước được làm từ cuộn tấm tôn hình chữ nhật có chiều dài 2m và chiều rộng 1m (lấy pi = 3,14). Chúc quý thầy cô và các em học sinh có kết quả tốt trong bài kiểm tra này! Hãy cố gắng và tự tin làm bài nhé!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra Toán 9 lần 2 năm 2022 - 2023 phòng GDĐT Vĩnh Yên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức học sinh lớp 6 – 7 – 8 – 9 môn Toán 9 lần 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Vĩnh Yên, tỉnh Vĩnh Phúc; đề thi được biên tập theo cấu trúc 30% trắc nghiệm kết hợp 70% tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề kiểm tra Toán 9 lần 2 năm 2022 – 2023 phòng GD&ĐT Vĩnh Yên – Vĩnh Phúc : + Hãy viết vào bài làm chỉ một chữ cái A, B, C hoặc D đứng trước câu trả lời đúng: Tất cả các giá trị của a để biểu thức 2022 a có nghĩa là? + Trong mặt phẳng tọa độ Oxy, xét đường thẳng d y mx 4 với m 0. a) Tìm m để d đi qua điểm A 2 6. b) Tìm tất cả giá trị của m để đường thẳng d song song với d y x 2022 2023. + Cho nửa đường tròn (O) đường kính AB = 2R. Kẻ các tiếp tuyến Ax, By với (O) (Ax, By nằm cùng phía đối với nửa đường tròn (O)). Gọi M là 1 điểm trên đường tròn (M khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax, By thứ tự ở C và D. Chứng minh rằng: a) Góc COD bằng 90°. b) Bốn điểm B, D, M, O thuộc 1 đường tròn và CD = AC + BD. c) Gọi N là giao điểm của AD và BC, Chứng minh: MN // AC.
Đề khảo sát lần 1 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Đăng Đạo - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng lần 1 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Đăng Đạo, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 30 tháng 11 năm 2022. Trích dẫn Đề khảo sát lần 1 Toán 9 năm 2022 – 2023 trường THCS Nguyễn Đăng Đạo – Bắc Ninh : + Cho các khẳng định sau: (1) Qua ba điểm phân biệt chỉ vẽ được một đường tròn duy nhất. (2) Có vô số đường tròn đi qua hai điểm phân biệt. (3) Tâm đường tròn ngoại tiếp tam giác nằm ở trung điểm của cạnh lớn nhất. (4) Trong một đường tròn, đường kính đi qua trung điểm của dây thì vuông góc với dây ấy. Số khẳng định đúng? + Cho hàm số y = (m − 1)x + 2 − m (với m là tham số). a) Vẽ đồ thị hàm số khi m = 3. b) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 5. c) Chứng minh rằng khoảng cách từ gốc tọa độ O đến đồ thị hàm số không vượt quá 2. + Trên đường tròn (O) đường kính AB, lấy điểm E bất kỳ (khác A và B). Gọi F là điểm đối xứng với E qua O. Vẽ đường thẳng vuông góc với AB tại B, đường thẳng này cắt các tia AE, AF lần lượt tại M và N. a) Chứng minh AE.AM = AF.AN. b) Tìm vị trí của E trên đường tròn (O) để đoạn thẳng MN có độ dài nhỏ nhất.
Đề khảo sát chất lượng Toán 9 tháng 11 năm 2022 trường THCS Suối Hoa - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 tháng 11 năm học 2022 – 2023 trường THCS Suối Hoa, tỉnh Bắc Ninh; đề thi được biên soạn theo cấu trúc 40% trắc nghiệm + 60% tự luận (theo điểm số), thời gian làm bài 90 phút. Trích dẫn Đề khảo sát chất lượng Toán 9 tháng 11 năm 2022 trường THCS Suối Hoa – Bắc Ninh : + Khẳng định nào sau đây là SAI? A. Trong các dây của một đường tròn, dây lớn nhất là đường kính. B. Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy. C. Trong các dây của một đường tròn, dây lớn nhất là bán kính. D. Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. + Cho hàm số bậc nhất y = (m + 1)x – 3. a) Với giá trị nào của m để thị hàm số đi qua điểm A(1;−1). b) Vẽ đồ thị của hàm số với giá trị vừa tìm được của m. + Cho tam giác ABC có AB = 5cm; BC = 12cm; AC = 13cm. a) Tam giác ABC là tam giác gì? Tính số đo góc A. b) Lấy điểm D đối xứng với điểm B qua đường thẳng AC, BD cắt AC tại E. Chứng minh bốn điểm A, B, C, D cùng thuộc một đường tròn. c) Gọi M, N lần lượt là hình chiếu vuông góc của E trên AB và BC. Chứng minh BD2 = 2BM.BA + 2BN.BC.
Đề kiểm tra Toán 9 tháng 12 năm 2022 trường THCS Thị trấn Hồ - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 tháng 12 năm học 2022 – 2023 trường THCS Thị trấn Hồ, tỉnh Bắc Ninh; đề thi được biên soạn theo cấu trúc 20% trắc nghiệm (08 câu) + 80% tự luận (05 câu), thời gian học sinh làm bài thi là 60 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào thứ Sáu ngày 16 tháng 12 năm 2022. Trích dẫn Đề kiểm tra Toán 9 tháng 12 năm 2022 trường THCS Thị trấn Hồ – Bắc Ninh : + Tâm của đường tròn ngoại tiếp tam giác là giao điểm của các đường: A. trung tuyến. B. phân giác. C. trung trực. D. Cao. + Cho hàm số bậc nhất y = (2m – 3)x + n (d). a) Tìm giá trị của m để hàm số đồng biến. b) Xác định hàm số, biết đồ thị (d) đi qua điểm (2;–5) và song song với đường thẳng (d1): y = -2x – 2. + Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm; AC = 4cm. a) Tính AH, BH, CH. b) Chứng minh CB là tiếp tuyến của đường tròn (A;AH). c) Kẻ tiếp tuyến BI và CK với đường tròn (A;AH) (I, K là tiếp điểm). Chứng minh BC = BI + CK và ba điểm I, A, K thẳng hàng.